import spaces
import os
import time
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, AutoProcessor
import gradio as gr
from threading import Thread
from PIL import Image
import subprocess
# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Define placeholder and footer
PLACEHOLDER = "Send a message..."
footer = """
Powered by Phi-3.5 Models
"""
# Model and tokenizer for the chatbot
MODEL_ID1 = "microsoft/Phi-3.5-mini-instruct"
MODEL_LIST1 = ["microsoft/Phi-3.5-mini-instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage / But you need GPU :)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID1)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID1,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
# Chatbot tab function
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
eos_token_id=[128001,128008,128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
# Vision model setup
models = {
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
}
processors = {
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
}
user_prompt = '\n'
assistant_prompt = '\n'
prompt_suffix = "\n"
# Vision model tab function
@spaces.GPU()
def stream_vision(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
model = models[model_id]
processor = processors[model_id]
# Prepare the image list and corresponding tags
images = [Image.fromarray(image).convert("RGB")]
placeholder = "<|image_1|>\n" # Using the image tag as per the example
# Construct the prompt with the image tag and the user's text input
if text_input:
prompt_content = placeholder + text_input
else:
prompt_content = placeholder
messages = [
{"role": "user", "content": prompt_content},
]
# Apply the chat template to the messages
prompt = processor.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Process the inputs with the processor
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
# Generation parameters
generation_args = {
"max_new_tokens": 1000,
"temperature": 0.0,
"do_sample": False,
}
# Generate the response
generate_ids = model.generate(
**inputs,
eos_token_id=processor.tokenizer.eos_token_id,
**generation_args
)
# Remove input tokens from the generated response
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
# Decode the generated output
response = processor.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return response
css = """
footer {
visibility: hidden;
}
"""
# Gradio app with two tabs
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["How to make a self-driving car?"],
["Give me a creative idea to establish a startup"],
["How can I improve my programming skills?"],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
with gr.Tab("Vision"):
with gr.Row():
input_img = gr.Image(label="Input Picture")
with gr.Row():
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
with gr.Row():
text_input = gr.Textbox(label="Question")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(stream_vision, [input_img, text_input, model_selector], [output_text])
gr.HTML(footer)
# Launch the combined app
demo.launch(debug=True)