import spaces
import os
import time
import torch
import gradio as gr
from threading import Thread
from PIL import Image
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# Model and processor initialization
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/QVQ-72B-Preview",
torch_dtype="auto",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
# Footer
footer = """
"""
# Vision model function
@spaces.GPU()
def process_image(image, text_input=None):
try:
# Convert image to PIL format if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
# Prepare messages
if not text_input:
text_input = "Please describe this image in detail."
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_input}
],
}
]
# Process inputs
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate response
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return output_text
except Exception as e:
return f"Error processing image: {str(e)}"
# CSS styling
css = """
footer {
visibility: hidden;
}
"""
# Gradio interface
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
with gr.Row():
text_input = gr.Textbox(label="Question (Optional)")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Response")
submit_btn.click(process_image, [input_img, text_input], [output_text])
gr.HTML(footer)
# Launch the app
demo.launch(debug=True)