import spaces
import os
import time
import torch
import gradio as gr
from threading import Thread
from PIL import Image
# Install required packages
import subprocess
subprocess.run('pip install --upgrade transformers', shell=True)
subprocess.run('pip install accelerate', shell=True)
from transformers import AutoModelForCausalLM, AutoTokenizer
# Model and tokenizer initialization
model_name = "Qwen/QVQ-72B-Preview"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16
)
# Footer
footer = """
"""
# Vision model function
@spaces.GPU()
def process_image(image, text_input=None):
try:
# Convert image to PIL format
image = Image.fromarray(image).convert("RGB")
# Prepare prompt
if text_input:
prompt = f"Please describe this image and answer: {text_input}"
else:
prompt = "Please describe this image in detail."
# Generate response
response = model.chat(tokenizer, prompt, history=[], images=image)
return response
except Exception as e:
return f"Error processing image: {str(e)}"
# CSS styling
css = """
footer {
visibility: hidden;
}
"""
# Gradio interface
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
with gr.Row():
text_input = gr.Textbox(label="Question (Optional)")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Response")
submit_btn.click(process_image, [input_img, text_input], [output_text])
gr.HTML(footer)
# Launch the app
demo.launch(debug=True)