Spaces:
Sleeping
Sleeping
update
Browse files
Raptor.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from sklearn.mixture import GaussianMixture
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from langchain_core.output_parsers import StrOutputParser
|
5 |
+
|
6 |
+
from typing import Dict, List, Optional, Tuple
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import umap
|
11 |
+
|
12 |
+
|
13 |
+
def global_cluster_embeddings(
|
14 |
+
embeddings: np.ndarray,
|
15 |
+
dim: int,
|
16 |
+
n_neighbors: Optional[int] = None,
|
17 |
+
metric: str = "cosine",
|
18 |
+
) -> np.ndarray:
|
19 |
+
if n_neighbors is None:
|
20 |
+
n_neighbors = int((len(embeddings) - 1) ** 0.5)
|
21 |
+
return umap.UMAP(
|
22 |
+
n_neighbors=n_neighbors, n_components=dim, metric=metric
|
23 |
+
).fit_transform(embeddings)
|
24 |
+
|
25 |
+
|
26 |
+
def local_cluster_embeddings(
|
27 |
+
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
|
28 |
+
) -> np.ndarray:
|
29 |
+
return umap.UMAP(
|
30 |
+
n_neighbors=num_neighbors, n_components=dim, metric=metric
|
31 |
+
).fit_transform(embeddings)
|
32 |
+
|
33 |
+
|
34 |
+
def get_optimal_clusters(
|
35 |
+
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
|
36 |
+
) -> int:
|
37 |
+
max_clusters = min(max_clusters, len(embeddings))
|
38 |
+
n_clusters = np.arange(1, max_clusters)
|
39 |
+
bics = []
|
40 |
+
for n in n_clusters:
|
41 |
+
gm = GaussianMixture(n_components=n, random_state=random_state)
|
42 |
+
gm.fit(embeddings)
|
43 |
+
bics.append(gm.bic(embeddings))
|
44 |
+
return n_clusters[np.argmin(bics)]
|
45 |
+
|
46 |
+
|
47 |
+
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
|
48 |
+
n_clusters = get_optimal_clusters(embeddings, random_state = 200)
|
49 |
+
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
|
50 |
+
gm.fit(embeddings)
|
51 |
+
probs = gm.predict_proba(embeddings)
|
52 |
+
labels = [np.where(prob > threshold)[0] for prob in probs]
|
53 |
+
return labels, n_clusters
|
54 |
+
|
55 |
+
|
56 |
+
def perform_clustering(
|
57 |
+
embeddings: np.ndarray,
|
58 |
+
dim: int,
|
59 |
+
threshold: float,
|
60 |
+
) -> List[np.ndarray]:
|
61 |
+
if len(embeddings) <= dim + 1:
|
62 |
+
return [np.array([0]) for _ in range(len(embeddings))]
|
63 |
+
|
64 |
+
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
|
65 |
+
global_clusters, n_global_clusters = GMM_cluster(
|
66 |
+
reduced_embeddings_global, threshold
|
67 |
+
)
|
68 |
+
|
69 |
+
all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
|
70 |
+
total_clusters = 0
|
71 |
+
|
72 |
+
for i in range(n_global_clusters):
|
73 |
+
global_cluster_embeddings_ = embeddings[
|
74 |
+
np.array([i in gc for gc in global_clusters])
|
75 |
+
]
|
76 |
+
if len(global_cluster_embeddings_) == 0:
|
77 |
+
continue
|
78 |
+
if len(global_cluster_embeddings_) <= dim + 1:
|
79 |
+
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
|
80 |
+
n_local_clusters = 1
|
81 |
+
else:
|
82 |
+
reduced_embeddings_local = local_cluster_embeddings(
|
83 |
+
global_cluster_embeddings_, dim
|
84 |
+
)
|
85 |
+
local_clusters, n_local_clusters = GMM_cluster(
|
86 |
+
reduced_embeddings_local, threshold
|
87 |
+
)
|
88 |
+
for j in range(n_local_clusters):
|
89 |
+
local_cluster_embeddings_ = global_cluster_embeddings_[
|
90 |
+
np.array([j in lc for lc in local_clusters])
|
91 |
+
]
|
92 |
+
indices = np.where(
|
93 |
+
(embeddings == local_cluster_embeddings_[:, None]).all(-1)
|
94 |
+
)[1]
|
95 |
+
for idx in indices:
|
96 |
+
all_local_clusters[idx] = np.append(
|
97 |
+
all_local_clusters[idx], j + total_clusters
|
98 |
+
)
|
99 |
+
|
100 |
+
total_clusters += n_local_clusters
|
101 |
+
|
102 |
+
return all_local_clusters
|
103 |
+
|
104 |
+
def embed(embd,texts):
|
105 |
+
text_embeddings = embd.embed_documents(texts)
|
106 |
+
text_embeddings_np = np.array(text_embeddings)
|
107 |
+
return text_embeddings_np
|
108 |
+
|
109 |
+
def embed_cluster_texts(embd,texts):
|
110 |
+
text_embeddings_np = embed(embd,texts) # Generate embeddings
|
111 |
+
cluster_labels = perform_clustering(
|
112 |
+
text_embeddings_np, 10, 0.1
|
113 |
+
)
|
114 |
+
df = pd.DataFrame() # Initialize a DataFrame to store the results
|
115 |
+
df["text"] = texts # Store original texts
|
116 |
+
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame
|
117 |
+
df["cluster"] = cluster_labels # Store cluster labels
|
118 |
+
return df
|
119 |
+
|
120 |
+
def fmt_txt(df: pd.DataFrame) -> str:
|
121 |
+
unique_txt = df["text"].tolist()
|
122 |
+
return "--- --- \n --- --- ".join(unique_txt)
|
123 |
+
|
124 |
+
|
125 |
+
def embed_cluster_summarize_texts(model,embd,
|
126 |
+
texts: List[str], level: int
|
127 |
+
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
128 |
+
df_clusters = embed_cluster_texts(embd,texts)
|
129 |
+
expanded_list = []
|
130 |
+
for index, row in df_clusters.iterrows():
|
131 |
+
for cluster in row["cluster"]:
|
132 |
+
expanded_list.append(
|
133 |
+
{"text": row["text"], "embd": row["embd"], "cluster": cluster}
|
134 |
+
)
|
135 |
+
expanded_df = pd.DataFrame(expanded_list)
|
136 |
+
all_clusters = expanded_df["cluster"].unique()
|
137 |
+
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
|
138 |
+
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
|
139 |
+
Tài liệu:
|
140 |
+
{context}
|
141 |
+
"""
|
142 |
+
prompt = ChatPromptTemplate.from_template(template)
|
143 |
+
chain = prompt | model | StrOutputParser()
|
144 |
+
|
145 |
+
summaries = []
|
146 |
+
for i in all_clusters:
|
147 |
+
df_cluster = expanded_df[expanded_df["cluster"] == i]
|
148 |
+
formatted_txt = fmt_txt(df_cluster)
|
149 |
+
summaries.append(chain.invoke({"context": formatted_txt}))
|
150 |
+
df_summary = pd.DataFrame(
|
151 |
+
{
|
152 |
+
"summaries": summaries,
|
153 |
+
"level": [level] * len(summaries),
|
154 |
+
"cluster": list(all_clusters),
|
155 |
+
}
|
156 |
+
)
|
157 |
+
return df_clusters, df_summary
|
158 |
+
|
159 |
+
def recursive_embed_cluster_summarize(model,embd,
|
160 |
+
texts: List[str], level: int = 1, n_levels: int = 3
|
161 |
+
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
|
162 |
+
results = {}
|
163 |
+
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)
|
164 |
+
results[level] = (df_clusters, df_summary)
|
165 |
+
unique_clusters = df_summary["cluster"].nunique()
|
166 |
+
if level < n_levels and unique_clusters > 1:
|
167 |
+
new_texts = df_summary["summaries"].tolist()
|
168 |
+
next_level_results = recursive_embed_cluster_summarize(model,embd,
|
169 |
+
new_texts, level + 1, n_levels
|
170 |
+
)
|
171 |
+
results.update(next_level_results)
|
172 |
+
|
173 |
+
return results
|
app.py
CHANGED
@@ -6,202 +6,11 @@ from langchain_community.document_loaders import TextLoader
|
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
|
9 |
-
from typing import Dict, List, Optional, Tuple
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import pandas as pd
|
13 |
-
import umap
|
14 |
from langchain_core.output_parsers import StrOutputParser
|
15 |
-
from sklearn.mixture import GaussianMixture
|
16 |
|
17 |
from langchain_core.runnables import RunnablePassthrough
|
18 |
from langchain_chroma import Chroma
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
def global_cluster_embeddings(
|
24 |
-
embeddings: np.ndarray,
|
25 |
-
dim: int,
|
26 |
-
n_neighbors: Optional[int] = None,
|
27 |
-
metric: str = "cosine",
|
28 |
-
) -> np.ndarray:
|
29 |
-
if n_neighbors is None:
|
30 |
-
n_neighbors = int((len(embeddings) - 1) ** 0.5)
|
31 |
-
return umap.UMAP(
|
32 |
-
n_neighbors=n_neighbors, n_components=dim, metric=metric
|
33 |
-
).fit_transform(embeddings)
|
34 |
-
|
35 |
-
|
36 |
-
def local_cluster_embeddings(
|
37 |
-
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
|
38 |
-
) -> np.ndarray:
|
39 |
-
return umap.UMAP(
|
40 |
-
n_neighbors=num_neighbors, n_components=dim, metric=metric
|
41 |
-
).fit_transform(embeddings)
|
42 |
-
|
43 |
-
|
44 |
-
def get_optimal_clusters(
|
45 |
-
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
|
46 |
-
) -> int:
|
47 |
-
max_clusters = min(max_clusters, len(embeddings))
|
48 |
-
n_clusters = np.arange(1, max_clusters)
|
49 |
-
bics = []
|
50 |
-
for n in n_clusters:
|
51 |
-
gm = GaussianMixture(n_components=n, random_state=random_state)
|
52 |
-
gm.fit(embeddings)
|
53 |
-
bics.append(gm.bic(embeddings))
|
54 |
-
return n_clusters[np.argmin(bics)]
|
55 |
-
|
56 |
-
|
57 |
-
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
|
58 |
-
n_clusters = get_optimal_clusters(embeddings, random_state = 200)
|
59 |
-
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
|
60 |
-
gm.fit(embeddings)
|
61 |
-
probs = gm.predict_proba(embeddings)
|
62 |
-
labels = [np.where(prob > threshold)[0] for prob in probs]
|
63 |
-
return labels, n_clusters
|
64 |
-
|
65 |
-
|
66 |
-
def perform_clustering(
|
67 |
-
embeddings: np.ndarray,
|
68 |
-
dim: int,
|
69 |
-
threshold: float,
|
70 |
-
) -> List[np.ndarray]:
|
71 |
-
if len(embeddings) <= dim + 1:
|
72 |
-
# Avoid clustering when there's insufficient data
|
73 |
-
return [np.array([0]) for _ in range(len(embeddings))]
|
74 |
-
|
75 |
-
# Global dimensionality reduction
|
76 |
-
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
|
77 |
-
# Global clustering
|
78 |
-
global_clusters, n_global_clusters = GMM_cluster(
|
79 |
-
reduced_embeddings_global, threshold
|
80 |
-
)
|
81 |
-
|
82 |
-
all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
|
83 |
-
total_clusters = 0
|
84 |
-
|
85 |
-
# Iterate through each global cluster to perform local clustering
|
86 |
-
for i in range(n_global_clusters):
|
87 |
-
# Extract embeddings belonging to the current global cluster
|
88 |
-
global_cluster_embeddings_ = embeddings[
|
89 |
-
np.array([i in gc for gc in global_clusters])
|
90 |
-
]
|
91 |
-
|
92 |
-
if len(global_cluster_embeddings_) == 0:
|
93 |
-
continue
|
94 |
-
if len(global_cluster_embeddings_) <= dim + 1:
|
95 |
-
# Handle small clusters with direct assignment
|
96 |
-
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
|
97 |
-
n_local_clusters = 1
|
98 |
-
else:
|
99 |
-
# Local dimensionality reduction and clustering
|
100 |
-
reduced_embeddings_local = local_cluster_embeddings(
|
101 |
-
global_cluster_embeddings_, dim
|
102 |
-
)
|
103 |
-
local_clusters, n_local_clusters = GMM_cluster(
|
104 |
-
reduced_embeddings_local, threshold
|
105 |
-
)
|
106 |
-
|
107 |
-
# Assign local cluster IDs, adjusting for total clusters already processed
|
108 |
-
for j in range(n_local_clusters):
|
109 |
-
local_cluster_embeddings_ = global_cluster_embeddings_[
|
110 |
-
np.array([j in lc for lc in local_clusters])
|
111 |
-
]
|
112 |
-
indices = np.where(
|
113 |
-
(embeddings == local_cluster_embeddings_[:, None]).all(-1)
|
114 |
-
)[1]
|
115 |
-
for idx in indices:
|
116 |
-
all_local_clusters[idx] = np.append(
|
117 |
-
all_local_clusters[idx], j + total_clusters
|
118 |
-
)
|
119 |
-
|
120 |
-
total_clusters += n_local_clusters
|
121 |
-
|
122 |
-
return all_local_clusters
|
123 |
-
|
124 |
-
def embed(embd,texts):
|
125 |
-
text_embeddings = embd.embed_documents(texts)
|
126 |
-
text_embeddings_np = np.array(text_embeddings)
|
127 |
-
return text_embeddings_np
|
128 |
-
|
129 |
-
def embed_cluster_texts(embd,texts):
|
130 |
-
text_embeddings_np = embed(embd,texts) # Generate embeddings
|
131 |
-
cluster_labels = perform_clustering(
|
132 |
-
text_embeddings_np, 10, 0.1
|
133 |
-
) # Perform clustering on the embeddings
|
134 |
-
df = pd.DataFrame() # Initialize a DataFrame to store the results
|
135 |
-
df["text"] = texts # Store original texts
|
136 |
-
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame
|
137 |
-
df["cluster"] = cluster_labels # Store cluster labels
|
138 |
-
return df
|
139 |
-
|
140 |
-
def fmt_txt(df: pd.DataFrame) -> str:
|
141 |
-
unique_txt = df["text"].tolist()
|
142 |
-
return "--- --- \n --- --- ".join(unique_txt)
|
143 |
-
|
144 |
-
|
145 |
-
def embed_cluster_summarize_texts(model,embd,
|
146 |
-
texts: List[str], level: int
|
147 |
-
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
148 |
-
df_clusters = embed_cluster_texts(embd,texts)
|
149 |
-
|
150 |
-
# Prepare to expand the DataFrame for easier manipulation of clusters
|
151 |
-
expanded_list = []
|
152 |
-
|
153 |
-
# Expand DataFrame entries to document-cluster pairings for straightforward processing
|
154 |
-
for index, row in df_clusters.iterrows():
|
155 |
-
for cluster in row["cluster"]:
|
156 |
-
expanded_list.append(
|
157 |
-
{"text": row["text"], "embd": row["embd"], "cluster": cluster}
|
158 |
-
)
|
159 |
-
|
160 |
-
# Create a new DataFrame from the expanded list
|
161 |
-
expanded_df = pd.DataFrame(expanded_list)
|
162 |
-
|
163 |
-
# Retrieve unique cluster identifiers for processing
|
164 |
-
all_clusters = expanded_df["cluster"].unique()
|
165 |
-
# Summarization
|
166 |
-
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
|
167 |
-
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
|
168 |
-
Tài liệu:
|
169 |
-
{context}
|
170 |
-
"""
|
171 |
-
prompt = ChatPromptTemplate.from_template(template)
|
172 |
-
chain = prompt | model | StrOutputParser()
|
173 |
-
|
174 |
-
summaries = []
|
175 |
-
for i in all_clusters:
|
176 |
-
df_cluster = expanded_df[expanded_df["cluster"] == i]
|
177 |
-
formatted_txt = fmt_txt(df_cluster)
|
178 |
-
summaries.append(chain.invoke({"context": formatted_txt}))
|
179 |
-
df_summary = pd.DataFrame(
|
180 |
-
{
|
181 |
-
"summaries": summaries,
|
182 |
-
"level": [level] * len(summaries),
|
183 |
-
"cluster": list(all_clusters),
|
184 |
-
}
|
185 |
-
)
|
186 |
-
return df_clusters, df_summary
|
187 |
-
|
188 |
-
def recursive_embed_cluster_summarize(model,embd,
|
189 |
-
texts: List[str], level: int = 1, n_levels: int = 3
|
190 |
-
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
|
191 |
-
results = {}
|
192 |
-
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)
|
193 |
-
|
194 |
-
results[level] = (df_clusters, df_summary)
|
195 |
-
|
196 |
-
unique_clusters = df_summary["cluster"].nunique()
|
197 |
-
if level < n_levels and unique_clusters > 1:
|
198 |
-
new_texts = df_summary["summaries"].tolist()
|
199 |
-
next_level_results = recursive_embed_cluster_summarize(model,embd,
|
200 |
-
new_texts, level + 1, n_levels
|
201 |
-
)
|
202 |
-
results.update(next_level_results)
|
203 |
-
|
204 |
-
return results
|
205 |
|
206 |
page = st.title("Chat with AskUSTH")
|
207 |
|
@@ -313,11 +122,17 @@ def format_docs(docs):
|
|
313 |
|
314 |
@st.cache_resource
|
315 |
def compute_rag_chain(_model, _embd, docs_texts):
|
316 |
-
results = recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
317 |
all_texts = docs_texts.copy()
|
|
|
318 |
for level in sorted(results.keys()):
|
319 |
summaries = results[level][1]["summaries"].tolist()
|
320 |
all_texts.extend(summaries)
|
|
|
|
|
|
|
|
|
|
|
321 |
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
|
322 |
retriever = vectorstore.as_retriever()
|
323 |
template = """
|
|
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
10 |
|
11 |
from langchain_core.runnables import RunnablePassthrough
|
12 |
from langchain_chroma import Chroma
|
13 |
+
import Raptor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
page = st.title("Chat with AskUSTH")
|
16 |
|
|
|
122 |
|
123 |
@st.cache_resource
|
124 |
def compute_rag_chain(_model, _embd, docs_texts):
|
125 |
+
results = Raptor.recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
126 |
all_texts = docs_texts.copy()
|
127 |
+
i = 0
|
128 |
for level in sorted(results.keys()):
|
129 |
summaries = results[level][1]["summaries"].tolist()
|
130 |
all_texts.extend(summaries)
|
131 |
+
print(f"summary {i} -------------------------------------------------")
|
132 |
+
print(summaries)
|
133 |
+
i += 1
|
134 |
+
print("all_texts ______________________________________")
|
135 |
+
print(all_texts)
|
136 |
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
|
137 |
retriever = vectorstore.as_retriever()
|
138 |
template = """
|