Update app.py
Browse files
app.py
CHANGED
@@ -1,281 +1,281 @@
|
|
1 |
-
# Import required modules
|
2 |
-
import streamlit as st
|
3 |
-
from ultralytics import YOLO
|
4 |
-
from PIL import Image
|
5 |
-
import os
|
6 |
-
import json
|
7 |
-
import logging
|
8 |
-
import tempfile
|
9 |
-
import pandas as pd
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
|
12 |
-
st.set_page_config(
|
13 |
-
page_title="Fish Detector",
|
14 |
-
page_icon="π",
|
15 |
-
layout="wide"
|
16 |
-
)
|
17 |
-
sample_images_folder = "./images/sample_images"
|
18 |
-
logging.basicConfig(level=logging.INFO)
|
19 |
-
|
20 |
-
# Model loading
|
21 |
-
model_folder = "./models"
|
22 |
-
st.sidebar.title("π Fish or No Fish Detector")
|
23 |
-
st.sidebar.markdown("""
|
24 |
-
### For more information:
|
25 |
-
- Contact: Michael.Akridge@NOAA.gov
|
26 |
-
- Visit the [GitHub repository](https://github.com/MichaelAkridge-NOAA/Fish-or-No-Fish-Detector/)
|
27 |
-
""")
|
28 |
-
# Display model links
|
29 |
-
st.sidebar.markdown("### Model Links")
|
30 |
-
st.sidebar.markdown("- [YOLO11 Fish Detector - Grayscale](https://huggingface.co/akridge/yolo11-fish-detector-grayscale)")
|
31 |
-
st.sidebar.markdown("- [YOLO11 Segment Fish - Grayscale](https://huggingface.co/akridge/yolo11-segment-fish-grayscale)")
|
32 |
-
model_name = st.sidebar.selectbox("Select a YOLO model", os.listdir(model_folder))
|
33 |
-
model_path = os.path.join(model_folder, model_name)
|
34 |
-
if not os.path.exists(model_path):
|
35 |
-
st.error(f"Model file not found at {model_path}. Please check your setup.")
|
36 |
-
st.stop()
|
37 |
-
model = YOLO(model_path)
|
38 |
-
|
39 |
-
# Sidebar configuration
|
40 |
-
st.sidebar.header("Model Parameters")
|
41 |
-
confidence = st.sidebar.slider("Detection Confidence Threshold", 0.0, 1.0, 0.35)
|
42 |
-
final_confidence = st.sidebar.slider("Final Yes/No Confidence Threshold", 0.0, 1.0, 0.5)
|
43 |
-
|
44 |
-
# Title and description
|
45 |
-
st.title("π Fish or No Fish Detector")
|
46 |
-
st.write("""
|
47 |
-
Is there a fish π or not? Upload one or more images to detect fish. Using a trained [Ultralytics YOLO11 Model](https://github.com/ultralytics/ultralytics) for its object detection capabilities.
|
48 |
-
|
49 |
-
""")
|
50 |
-
|
51 |
-
# Custom CSS for button and uploader alignment
|
52 |
-
st.markdown("""
|
53 |
-
<style>
|
54 |
-
.custom-file-uploader {
|
55 |
-
display: flex;
|
56 |
-
align-items: center;
|
57 |
-
margin-top: -10px; /* Adjust to move button closer */
|
58 |
-
justify-content: flex-start;
|
59 |
-
}
|
60 |
-
.css-1cpxqw2 {
|
61 |
-
flex-grow: 1; /* Let file uploader take remaining space */
|
62 |
-
}
|
63 |
-
.sample-button {
|
64 |
-
font-size: 14px;
|
65 |
-
padding: 8px;
|
66 |
-
background-color: #007BFF;
|
67 |
-
color: white;
|
68 |
-
border: none;
|
69 |
-
border-radius: 5px;
|
70 |
-
cursor: pointer;
|
71 |
-
margin-left: 10px;
|
72 |
-
height: 38px; /* Ensure button matches uploader height */
|
73 |
-
}
|
74 |
-
.sample-button:hover {
|
75 |
-
background-color: #0056b3;
|
76 |
-
}
|
77 |
-
</style>
|
78 |
-
""", unsafe_allow_html=True)
|
79 |
-
|
80 |
-
# Custom CSS for default button styling
|
81 |
-
st.markdown("""
|
82 |
-
<style>
|
83 |
-
.stButton>button, .stDownloadButton>button {
|
84 |
-
width: 100%;
|
85 |
-
padding: 10px;
|
86 |
-
border-radius: 5px;
|
87 |
-
font-size: 18px;
|
88 |
-
font-weight: bold;
|
89 |
-
background-color: #007BFF;
|
90 |
-
color: white;
|
91 |
-
border: none;
|
92 |
-
cursor: pointer;
|
93 |
-
}
|
94 |
-
.stButton>button:hover, .stDownloadButton>button:hover {
|
95 |
-
background-color: #0056b3;
|
96 |
-
}
|
97 |
-
</style>
|
98 |
-
""", unsafe_allow_html=True)
|
99 |
-
# Load sample images function
|
100 |
-
def load_sample_images():
|
101 |
-
return [os.path.join(sample_images_folder, img) for img in os.listdir(sample_images_folder) if img.lower().endswith(('png', 'jpg', 'jpeg'))]
|
102 |
-
|
103 |
-
# Prediction function
|
104 |
-
def run(image_path):
|
105 |
-
results = model.predict(image_path, conf=confidence)
|
106 |
-
boxes = []
|
107 |
-
fish_count = 0
|
108 |
-
confidences = []
|
109 |
-
|
110 |
-
for box in results[0].boxes:
|
111 |
-
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
112 |
-
conf = box.conf[0].item()
|
113 |
-
class_id = int(box.cls[0].item())
|
114 |
-
class_label = model.names[class_id].lower() # Normalize to lowercase
|
115 |
-
|
116 |
-
if class_label == "fish" and conf > confidence:
|
117 |
-
fish_count += 1
|
118 |
-
confidences.append(conf)
|
119 |
-
|
120 |
-
boxes.append({"x1": x1, "y1": y1, "x2": x2, "y2": y2, "confidence": conf, "class_id": class_id, "class_label": class_label})
|
121 |
-
|
122 |
-
return results[0].plot()[:, :, ::-1], {"fish_count": fish_count, "confidences": confidences}
|
123 |
-
|
124 |
-
# Process images function with directory creation
|
125 |
-
# Reusable function to handle multiple image uploads and display results
|
126 |
-
def process_images(uploaded_files):
|
127 |
-
all_detections = []
|
128 |
-
result_images = []
|
129 |
-
summary_data = []
|
130 |
-
confidences = []
|
131 |
-
temp_dir = tempfile.gettempdir()
|
132 |
-
|
133 |
-
for uploaded_file in uploaded_files:
|
134 |
-
if isinstance(uploaded_file, str): # Check if it's a sample image path
|
135 |
-
image_path = uploaded_file
|
136 |
-
image = Image.open(image_path)
|
137 |
-
else:
|
138 |
-
image = Image.open(uploaded_file)
|
139 |
-
image_path = os.path.join(temp_dir, f"{uploaded_file.name}")
|
140 |
-
image.save(image_path)
|
141 |
-
|
142 |
-
st.write(f"Detecting in {os.path.basename(image_path)}...")
|
143 |
-
with st.spinner('Running detection...'):
|
144 |
-
result_image, detection_metadata = run(image_path)
|
145 |
-
|
146 |
-
if result_image is not None:
|
147 |
-
result_images.append((result_image, os.path.basename(image_path)))
|
148 |
-
all_detections.append(detection_metadata)
|
149 |
-
|
150 |
-
summary_data.append({
|
151 |
-
"image_name": os.path.basename(image_path),
|
152 |
-
"fish_detected": detection_metadata["fish_count"] > 0,
|
153 |
-
"fish_count": detection_metadata["fish_count"]
|
154 |
-
})
|
155 |
-
|
156 |
-
confidences.extend(detection_metadata["confidences"])
|
157 |
-
|
158 |
-
# Display fish status
|
159 |
-
fish_detected = detection_metadata['fish_count'] > 0
|
160 |
-
fish_status = f"<b><span style='color: green; font-size: 24px;'>YES</span></b> π" if fish_detected else f"<b><span style='color: red; font-size: 24px;'>NO</span></b>"
|
161 |
-
|
162 |
-
st.markdown(f"**Summary for {os.path.basename(image_path)}:** Fish detected: {fish_status}", unsafe_allow_html=True)
|
163 |
-
|
164 |
-
# Display images side by side
|
165 |
-
col1, col2 = st.columns(2)
|
166 |
-
with col1:
|
167 |
-
st.image(image, caption=f"Uploaded Image - {os.path.basename(image_path)}", use_column_width=True)
|
168 |
-
with col2:
|
169 |
-
st.image(result_image, caption=f"Detection Results - {os.path.basename(image_path)}", use_column_width=True)
|
170 |
-
|
171 |
-
st.success(f"Detection completed for {os.path.basename(image_path)} successfully! π")
|
172 |
-
|
173 |
-
else:
|
174 |
-
st.warning(f"No marine ecosystems detected in {os.path.basename(image_path)}.")
|
175 |
-
|
176 |
-
st.session_state["all_detections"] = all_detections
|
177 |
-
return summary_data, confidences
|
178 |
-
|
179 |
-
|
180 |
-
# Function to display a summary table and scatter plot side by side with image labels
|
181 |
-
def display_summary(summary_data, confidences):
|
182 |
-
if summary_data:
|
183 |
-
df = pd.DataFrame(summary_data)
|
184 |
-
|
185 |
-
col1, col2 = st.columns(2)
|
186 |
-
|
187 |
-
with col1:
|
188 |
-
st.subheader("Summary of Detections")
|
189 |
-
st.table(df[["image_name", "fish_count"]])
|
190 |
-
|
191 |
-
with col2:
|
192 |
-
st.subheader("Fish Detection Confidence Levels")
|
193 |
-
fig, ax = plt.subplots()
|
194 |
-
confidence_index = 0
|
195 |
-
|
196 |
-
for i, row in df.iterrows():
|
197 |
-
num_confidences_for_image = len([c for c in confidences[confidence_index:confidence_index + row["fish_count"]]])
|
198 |
-
|
199 |
-
for j in range(num_confidences_for_image):
|
200 |
-
if confidence_index < len(confidences):
|
201 |
-
ax.scatter(confidence_index, confidences[confidence_index], c='blue')
|
202 |
-
ax.text(confidence_index, confidences[confidence_index], row['image_name'],
|
203 |
-
fontsize=10, ha='center', va='bottom', rotation=0)
|
204 |
-
confidence_index += 1
|
205 |
-
|
206 |
-
ax.axhline(final_confidence, color='red', linestyle='--', label=f'Final Threshold ({final_confidence})')
|
207 |
-
ax.set_xlabel('Detections')
|
208 |
-
ax.set_ylabel('Confidence Level')
|
209 |
-
ax.legend(loc='lower left')
|
210 |
-
st.pyplot(fig)
|
211 |
-
|
212 |
-
if st.session_state.get("all_detections"):
|
213 |
-
json_data = json.dumps(st.session_state["all_detections"], indent=4)
|
214 |
-
st.download_button(
|
215 |
-
label="Download Results as JSON & Reset",
|
216 |
-
data=json_data,
|
217 |
-
file_name="all_detections.json",
|
218 |
-
mime="application/json",
|
219 |
-
key="download_json_bottom"
|
220 |
-
)
|
221 |
-
|
222 |
-
# Image uploader with multiple file support
|
223 |
-
st.markdown('<div class="custom-file-uploader">', unsafe_allow_html=True)
|
224 |
-
uploaded_files = st.file_uploader("Choose image(s)...", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
225 |
-
|
226 |
-
# Check if files are uploaded, hide the "Auto Run with Sample Images" button if they are
|
227 |
-
if not uploaded_files and not st.session_state.get('use_sample_images', False):
|
228 |
-
use_sample_images = st.button("Or Auto Run Using Sample Images", key="sample_button")
|
229 |
-
else:
|
230 |
-
use_sample_images = None
|
231 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
232 |
-
|
233 |
-
# Add the functionality for the "Try it with Sample Images" button
|
234 |
-
if use_sample_images:
|
235 |
-
sample_images = load_sample_images()
|
236 |
-
st.session_state['use_sample_images'] = True
|
237 |
-
for sample_image in sample_images:
|
238 |
-
st.session_state.setdefault('uploaded_files', []).append(sample_image)
|
239 |
-
st.session_state['run_automatically'] = True
|
240 |
-
|
241 |
-
# Display the Run, Clear, and Download buttons with enhanced styling
|
242 |
-
if uploaded_files or st.session_state.get('uploaded_files'):
|
243 |
-
col1, col2, col3 = st.columns([1, 1, 1], gap="small")
|
244 |
-
|
245 |
-
if not st.session_state.get('use_sample_images', False):
|
246 |
-
with col1:
|
247 |
-
run_button = st.button("Click to Run", key="run_button")
|
248 |
-
else:
|
249 |
-
run_button = None
|
250 |
-
|
251 |
-
# Initialize clear_button to None to avoid NameError
|
252 |
-
clear_button = None
|
253 |
-
|
254 |
-
# Conditionally hide the "Clear Results" button while processing
|
255 |
-
with col2:
|
256 |
-
if not st.session_state.get('processing', False):
|
257 |
-
clear_button = st.button("Clear Results", key="clear_button")
|
258 |
-
|
259 |
-
# Run automatically if triggered by the sample images button or the run button
|
260 |
-
if run_button or st.session_state.get('run_automatically'):
|
261 |
-
st.session_state['processing'] = True # Set the processing flag
|
262 |
-
summary_data, confidences = process_images(uploaded_files or st.session_state['uploaded_files'])
|
263 |
-
display_summary(summary_data, confidences)
|
264 |
-
st.session_state['processing'] = False # Reset the processing flag after processing is done
|
265 |
-
st.session_state['run_automatically'] = False
|
266 |
-
st.session_state['use_sample_images'] = False
|
267 |
-
|
268 |
-
# Now this check will work, even if clear_button is not defined earlier
|
269 |
-
if clear_button:
|
270 |
-
st.session_state.clear()
|
271 |
-
|
272 |
-
if st.session_state.get("all_detections"):
|
273 |
-
with col3:
|
274 |
-
json_data = json.dumps(st.session_state["all_detections"], indent=4)
|
275 |
-
st.download_button(
|
276 |
-
label="Download Results as JSON & Reset",
|
277 |
-
data=json_data,
|
278 |
-
file_name="all_detections.json",
|
279 |
-
mime="application/json",
|
280 |
-
key="download_json"
|
281 |
-
)
|
|
|
1 |
+
# Import required modules
|
2 |
+
import streamlit as st
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import tempfile
|
9 |
+
import pandas as pd
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Fish Detector",
|
14 |
+
page_icon="π",
|
15 |
+
layout="wide"
|
16 |
+
)
|
17 |
+
sample_images_folder = "./images/sample_images"
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
|
20 |
+
# Model loading
|
21 |
+
model_folder = "./models"
|
22 |
+
st.sidebar.title("π Fish or No Fish Detector")
|
23 |
+
st.sidebar.markdown("""
|
24 |
+
### For more information:
|
25 |
+
- Contact: Michael.Akridge@NOAA.gov
|
26 |
+
- Visit the [GitHub repository](https://github.com/MichaelAkridge-NOAA/Fish-or-No-Fish-Detector/)
|
27 |
+
""")
|
28 |
+
# Display model links
|
29 |
+
st.sidebar.markdown("### Model Links")
|
30 |
+
st.sidebar.markdown("- [YOLO11 Fish Detector - Grayscale](https://huggingface.co/akridge/yolo11-fish-detector-grayscale)")
|
31 |
+
st.sidebar.markdown("- [YOLO11 Segment Fish - Grayscale](https://huggingface.co/akridge/yolo11-segment-fish-grayscale)")
|
32 |
+
model_name = st.sidebar.selectbox("Select a YOLO model", os.listdir(model_folder))
|
33 |
+
model_path = os.path.join(model_folder, model_name)
|
34 |
+
if not os.path.exists(model_path):
|
35 |
+
st.error(f"Model file not found at {model_path}. Please check your setup.")
|
36 |
+
st.stop()
|
37 |
+
model = YOLO(model_path)
|
38 |
+
|
39 |
+
# Sidebar configuration
|
40 |
+
st.sidebar.header("Model Parameters")
|
41 |
+
confidence = st.sidebar.slider("Detection Confidence Threshold", 0.0, 1.0, 0.35)
|
42 |
+
final_confidence = st.sidebar.slider("Final Yes/No Confidence Threshold", 0.0, 1.0, 0.5)
|
43 |
+
|
44 |
+
# Title and description
|
45 |
+
st.title("π Fish or No Fish Detector (grayscale)")
|
46 |
+
st.write("""
|
47 |
+
Is there a fish π or not? Upload one or more grayscale images to detect fish. Using a trained [Ultralytics YOLO11 Model](https://github.com/ultralytics/ultralytics) for its object detection capabilities.
|
48 |
+
|
49 |
+
""")
|
50 |
+
|
51 |
+
# Custom CSS for button and uploader alignment
|
52 |
+
st.markdown("""
|
53 |
+
<style>
|
54 |
+
.custom-file-uploader {
|
55 |
+
display: flex;
|
56 |
+
align-items: center;
|
57 |
+
margin-top: -10px; /* Adjust to move button closer */
|
58 |
+
justify-content: flex-start;
|
59 |
+
}
|
60 |
+
.css-1cpxqw2 {
|
61 |
+
flex-grow: 1; /* Let file uploader take remaining space */
|
62 |
+
}
|
63 |
+
.sample-button {
|
64 |
+
font-size: 14px;
|
65 |
+
padding: 8px;
|
66 |
+
background-color: #007BFF;
|
67 |
+
color: white;
|
68 |
+
border: none;
|
69 |
+
border-radius: 5px;
|
70 |
+
cursor: pointer;
|
71 |
+
margin-left: 10px;
|
72 |
+
height: 38px; /* Ensure button matches uploader height */
|
73 |
+
}
|
74 |
+
.sample-button:hover {
|
75 |
+
background-color: #0056b3;
|
76 |
+
}
|
77 |
+
</style>
|
78 |
+
""", unsafe_allow_html=True)
|
79 |
+
|
80 |
+
# Custom CSS for default button styling
|
81 |
+
st.markdown("""
|
82 |
+
<style>
|
83 |
+
.stButton>button, .stDownloadButton>button {
|
84 |
+
width: 100%;
|
85 |
+
padding: 10px;
|
86 |
+
border-radius: 5px;
|
87 |
+
font-size: 18px;
|
88 |
+
font-weight: bold;
|
89 |
+
background-color: #007BFF;
|
90 |
+
color: white;
|
91 |
+
border: none;
|
92 |
+
cursor: pointer;
|
93 |
+
}
|
94 |
+
.stButton>button:hover, .stDownloadButton>button:hover {
|
95 |
+
background-color: #0056b3;
|
96 |
+
}
|
97 |
+
</style>
|
98 |
+
""", unsafe_allow_html=True)
|
99 |
+
# Load sample images function
|
100 |
+
def load_sample_images():
|
101 |
+
return [os.path.join(sample_images_folder, img) for img in os.listdir(sample_images_folder) if img.lower().endswith(('png', 'jpg', 'jpeg'))]
|
102 |
+
|
103 |
+
# Prediction function
|
104 |
+
def run(image_path):
|
105 |
+
results = model.predict(image_path, conf=confidence)
|
106 |
+
boxes = []
|
107 |
+
fish_count = 0
|
108 |
+
confidences = []
|
109 |
+
|
110 |
+
for box in results[0].boxes:
|
111 |
+
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
112 |
+
conf = box.conf[0].item()
|
113 |
+
class_id = int(box.cls[0].item())
|
114 |
+
class_label = model.names[class_id].lower() # Normalize to lowercase
|
115 |
+
|
116 |
+
if class_label == "fish" and conf > confidence:
|
117 |
+
fish_count += 1
|
118 |
+
confidences.append(conf)
|
119 |
+
|
120 |
+
boxes.append({"x1": x1, "y1": y1, "x2": x2, "y2": y2, "confidence": conf, "class_id": class_id, "class_label": class_label})
|
121 |
+
|
122 |
+
return results[0].plot()[:, :, ::-1], {"fish_count": fish_count, "confidences": confidences}
|
123 |
+
|
124 |
+
# Process images function with directory creation
|
125 |
+
# Reusable function to handle multiple image uploads and display results
|
126 |
+
def process_images(uploaded_files):
|
127 |
+
all_detections = []
|
128 |
+
result_images = []
|
129 |
+
summary_data = []
|
130 |
+
confidences = []
|
131 |
+
temp_dir = tempfile.gettempdir()
|
132 |
+
|
133 |
+
for uploaded_file in uploaded_files:
|
134 |
+
if isinstance(uploaded_file, str): # Check if it's a sample image path
|
135 |
+
image_path = uploaded_file
|
136 |
+
image = Image.open(image_path)
|
137 |
+
else:
|
138 |
+
image = Image.open(uploaded_file)
|
139 |
+
image_path = os.path.join(temp_dir, f"{uploaded_file.name}")
|
140 |
+
image.save(image_path)
|
141 |
+
|
142 |
+
st.write(f"Detecting in {os.path.basename(image_path)}...")
|
143 |
+
with st.spinner('Running detection...'):
|
144 |
+
result_image, detection_metadata = run(image_path)
|
145 |
+
|
146 |
+
if result_image is not None:
|
147 |
+
result_images.append((result_image, os.path.basename(image_path)))
|
148 |
+
all_detections.append(detection_metadata)
|
149 |
+
|
150 |
+
summary_data.append({
|
151 |
+
"image_name": os.path.basename(image_path),
|
152 |
+
"fish_detected": detection_metadata["fish_count"] > 0,
|
153 |
+
"fish_count": detection_metadata["fish_count"]
|
154 |
+
})
|
155 |
+
|
156 |
+
confidences.extend(detection_metadata["confidences"])
|
157 |
+
|
158 |
+
# Display fish status
|
159 |
+
fish_detected = detection_metadata['fish_count'] > 0
|
160 |
+
fish_status = f"<b><span style='color: green; font-size: 24px;'>YES</span></b> π" if fish_detected else f"<b><span style='color: red; font-size: 24px;'>NO</span></b>"
|
161 |
+
|
162 |
+
st.markdown(f"**Summary for {os.path.basename(image_path)}:** Fish detected: {fish_status}", unsafe_allow_html=True)
|
163 |
+
|
164 |
+
# Display images side by side
|
165 |
+
col1, col2 = st.columns(2)
|
166 |
+
with col1:
|
167 |
+
st.image(image, caption=f"Uploaded Image - {os.path.basename(image_path)}", use_column_width=True)
|
168 |
+
with col2:
|
169 |
+
st.image(result_image, caption=f"Detection Results - {os.path.basename(image_path)}", use_column_width=True)
|
170 |
+
|
171 |
+
st.success(f"Detection completed for {os.path.basename(image_path)} successfully! π")
|
172 |
+
|
173 |
+
else:
|
174 |
+
st.warning(f"No marine ecosystems detected in {os.path.basename(image_path)}.")
|
175 |
+
|
176 |
+
st.session_state["all_detections"] = all_detections
|
177 |
+
return summary_data, confidences
|
178 |
+
|
179 |
+
|
180 |
+
# Function to display a summary table and scatter plot side by side with image labels
|
181 |
+
def display_summary(summary_data, confidences):
|
182 |
+
if summary_data:
|
183 |
+
df = pd.DataFrame(summary_data)
|
184 |
+
|
185 |
+
col1, col2 = st.columns(2)
|
186 |
+
|
187 |
+
with col1:
|
188 |
+
st.subheader("Summary of Detections")
|
189 |
+
st.table(df[["image_name", "fish_count"]])
|
190 |
+
|
191 |
+
with col2:
|
192 |
+
st.subheader("Fish Detection Confidence Levels")
|
193 |
+
fig, ax = plt.subplots()
|
194 |
+
confidence_index = 0
|
195 |
+
|
196 |
+
for i, row in df.iterrows():
|
197 |
+
num_confidences_for_image = len([c for c in confidences[confidence_index:confidence_index + row["fish_count"]]])
|
198 |
+
|
199 |
+
for j in range(num_confidences_for_image):
|
200 |
+
if confidence_index < len(confidences):
|
201 |
+
ax.scatter(confidence_index, confidences[confidence_index], c='blue')
|
202 |
+
ax.text(confidence_index, confidences[confidence_index], row['image_name'],
|
203 |
+
fontsize=10, ha='center', va='bottom', rotation=0)
|
204 |
+
confidence_index += 1
|
205 |
+
|
206 |
+
ax.axhline(final_confidence, color='red', linestyle='--', label=f'Final Threshold ({final_confidence})')
|
207 |
+
ax.set_xlabel('Detections')
|
208 |
+
ax.set_ylabel('Confidence Level')
|
209 |
+
ax.legend(loc='lower left')
|
210 |
+
st.pyplot(fig)
|
211 |
+
|
212 |
+
if st.session_state.get("all_detections"):
|
213 |
+
json_data = json.dumps(st.session_state["all_detections"], indent=4)
|
214 |
+
st.download_button(
|
215 |
+
label="Download Results as JSON & Reset",
|
216 |
+
data=json_data,
|
217 |
+
file_name="all_detections.json",
|
218 |
+
mime="application/json",
|
219 |
+
key="download_json_bottom"
|
220 |
+
)
|
221 |
+
|
222 |
+
# Image uploader with multiple file support
|
223 |
+
st.markdown('<div class="custom-file-uploader">', unsafe_allow_html=True)
|
224 |
+
uploaded_files = st.file_uploader("Choose image(s)...", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
225 |
+
|
226 |
+
# Check if files are uploaded, hide the "Auto Run with Sample Images" button if they are
|
227 |
+
if not uploaded_files and not st.session_state.get('use_sample_images', False):
|
228 |
+
use_sample_images = st.button("Or Auto Run Using Sample Images", key="sample_button")
|
229 |
+
else:
|
230 |
+
use_sample_images = None
|
231 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
232 |
+
|
233 |
+
# Add the functionality for the "Try it with Sample Images" button
|
234 |
+
if use_sample_images:
|
235 |
+
sample_images = load_sample_images()
|
236 |
+
st.session_state['use_sample_images'] = True
|
237 |
+
for sample_image in sample_images:
|
238 |
+
st.session_state.setdefault('uploaded_files', []).append(sample_image)
|
239 |
+
st.session_state['run_automatically'] = True
|
240 |
+
|
241 |
+
# Display the Run, Clear, and Download buttons with enhanced styling
|
242 |
+
if uploaded_files or st.session_state.get('uploaded_files'):
|
243 |
+
col1, col2, col3 = st.columns([1, 1, 1], gap="small")
|
244 |
+
|
245 |
+
if not st.session_state.get('use_sample_images', False):
|
246 |
+
with col1:
|
247 |
+
run_button = st.button("Click to Run", key="run_button")
|
248 |
+
else:
|
249 |
+
run_button = None
|
250 |
+
|
251 |
+
# Initialize clear_button to None to avoid NameError
|
252 |
+
clear_button = None
|
253 |
+
|
254 |
+
# Conditionally hide the "Clear Results" button while processing
|
255 |
+
with col2:
|
256 |
+
if not st.session_state.get('processing', False):
|
257 |
+
clear_button = st.button("Clear Results", key="clear_button")
|
258 |
+
|
259 |
+
# Run automatically if triggered by the sample images button or the run button
|
260 |
+
if run_button or st.session_state.get('run_automatically'):
|
261 |
+
st.session_state['processing'] = True # Set the processing flag
|
262 |
+
summary_data, confidences = process_images(uploaded_files or st.session_state['uploaded_files'])
|
263 |
+
display_summary(summary_data, confidences)
|
264 |
+
st.session_state['processing'] = False # Reset the processing flag after processing is done
|
265 |
+
st.session_state['run_automatically'] = False
|
266 |
+
st.session_state['use_sample_images'] = False
|
267 |
+
|
268 |
+
# Now this check will work, even if clear_button is not defined earlier
|
269 |
+
if clear_button:
|
270 |
+
st.session_state.clear()
|
271 |
+
|
272 |
+
if st.session_state.get("all_detections"):
|
273 |
+
with col3:
|
274 |
+
json_data = json.dumps(st.session_state["all_detections"], indent=4)
|
275 |
+
st.download_button(
|
276 |
+
label="Download Results as JSON & Reset",
|
277 |
+
data=json_data,
|
278 |
+
file_name="all_detections.json",
|
279 |
+
mime="application/json",
|
280 |
+
key="download_json"
|
281 |
+
)
|