File size: 20,618 Bytes
35188e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from typing import Optional
import math
from functools import partial

import torch
import torch.nn as nn


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.",
            stacklevel=2
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5  # square root of dimension for normalisation

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape  # B x (cls token + # patch tokens) x dim

        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # qkv: 3 x B x Nh x (cls token + # patch tokens) x (dim // Nh)

        q, k, v = qkv[0], qkv[1], qkv[2]
        # q, k, v: B x Nh x (cls token + # patch tokens) x (dim // Nh)

        # q: B x Nh x (cls token + # patch tokens) x (dim // Nh)
        # k.transpose(-2, -1) = B x Nh x (dim // Nh) x (cls token + # patch tokens)
        # attn: B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
        attn = (q @ k.transpose(-2, -1)) * self.scale  # @ operator is for matrix multiplication
        attn = attn.softmax(dim=-1)  # B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
        attn = self.attn_drop(attn)

        # attn = B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
        # v = B x Nh x (cls token + # patch tokens) x (dim // Nh)
        # attn @ v = B x Nh x (cls token + # patch tokens) x (dim // Nh)
        # (attn @ v).transpose(1, 2) = B x (cls token + # patch tokens) x Nh x (dim // Nh)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)  # B x (cls token + # patch tokens) x dim
        x = self.proj(x)  # B x (cls token + # patch tokens) x dim
        x = self.proj_drop(x)
        return x, attn


class Block(nn.Module):
    def __init__(self,
                 dim, num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, return_attention=False):
        y, attn = self.attn(self.norm1(x))
        if return_attention:
            return attn
        x = x + self.drop_path(y)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding"""
    def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)  # B x (P_H * P_W) x C
        return x


class VisionTransformer(nn.Module):
    """ Vision Transformer """
    def __init__(self,
                 img_size=(224, 224),
                 patch_size=16,
                 in_chans=3,
                 num_classes=0,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim

        self.patch_embed = PatchEmbed(
            img_size=(224, 224),  # noel: this is to load pretrained model.
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer
            ) for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        # Classifier head
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

        self.depth = depth
        self.embed_dim = self.n_embs = embed_dim
        self.mlp_ratio = mlp_ratio
        self.n_heads = num_heads
        self.patch_size = patch_size

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor:
        """Pad some pixels to make the input size divisible by the patch size."""
        B, _, H_0, W_0 = x.shape
        pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size
        pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size

        x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0)
        return x

    def prepare_tokens(self, x):
        B, nc, h, w = x.shape
        x: torch.Tensor = self.make_input_divisible(x)
        patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size

        x = self.patch_embed(x)  # patch linear embedding

        # add positional encoding to each token
        # add the [CLS] token to the embed patch tokens
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w))
        return self.pos_drop(x)

    @staticmethod
    def split_token(x, token_type: str):
        if token_type == "cls":
            return x[:, 0, :]
        elif token_type == "patch":
            return x[:, 1:, :]
        else:
            return x

    # noel
    def forward(self, x, layer: Optional[str] = None):
        x: torch.Tensor = self.prepare_tokens(x)

        features: dict = {}
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            features[f"layer{i + 1}"] = self.norm(x)

        if layer is not None:
            return features[layer]
        else:
            return features

    # noel - for DINO's visual
    def get_last_selfattention(self, x):
        x = self.prepare_tokens(x)
        for i, blk in enumerate(self.blocks):
            if i < len(self.blocks) - 1:
                x = blk(x)
            else:
                # return attention of the last block
                return blk(x, return_attention=True)

    def get_tokens(
            self,
            x,
            layers: list,
            patch_tokens: bool = False,
            norm: bool = True,
            input_tokens: bool = False,
            post_pe: bool = False
    ):
        """Return intermediate tokens."""
        list_tokens: list = []

        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)

        x = torch.cat((cls_tokens, x), dim=1)

        if input_tokens:
            list_tokens.append(x)

        pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
        x = x + pos_embed

        if post_pe:
            list_tokens.append(x)

        x = self.pos_drop(x)

        for i, blk in enumerate(self.blocks):
            x = blk(x)  # B x # patches x dim
            if layers is None or i in layers:
                list_tokens.append(self.norm(x) if norm else x)

        tokens = torch.stack(list_tokens, dim=1)  # B x n_layers x (1 + # patches) x dim

        if not patch_tokens:
            return tokens[:, :, 0, :]  # index [CLS] tokens only, B x n_layers x dim

        else:
            return tokens

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
        x = x + pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        if self.norm is not None:
            x = self.norm(x)

        return x[:, 0]

    def interpolate_pos_encoding(self, x, pos_embed, size):
        """Interpolate the learnable positional encoding to match the number of patches.

        x: B x (1 + N patches) x dim_embedding
        pos_embed: B x (1 + N patches) x dim_embedding

        return interpolated positional embedding
        """
        npatch = x.shape[1] - 1  # (H // patch_size * W // patch_size)
        N = pos_embed.shape[1] - 1  # 784 (= 28 x 28)
        if npatch == N:
            return pos_embed
        class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:]  # a learnable CLS token, learnable position embeddings

        dim = x.shape[-1]  # dimension of embeddings
        pos_embed = nn.functional.interpolate(
            pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),  # B x dim x 28 x 28
            size=size,
            mode='bicubic',
            align_corners=False
        )

        pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
        return pos_embed

    def forward_selfattention(self, x, return_interm_attn=False):
        B, nc, w, h = x.shape
        N = self.pos_embed.shape[1] - 1
        x = self.patch_embed(x)

        # interpolate patch embeddings
        dim = x.shape[-1]
        w0 = w // self.patch_embed.patch_size
        h0 = h // self.patch_embed.patch_size
        class_pos_embed = self.pos_embed[:, 0]
        patch_pos_embed = self.pos_embed[:, 1:]
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
            scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
            mode='bicubic'
        )
        if w0 != patch_pos_embed.shape[-2]:
            helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device)
            patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
        if h0 != patch_pos_embed.shape[-1]:
            helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device)
            pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

        cls_tokens = self.cls_token.expand(B, -1, -1)  # self.cls_token: 1 x 1 x emb_dim -> ?
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + pos_embed
        x = self.pos_drop(x)

        if return_interm_attn:
            list_attn = []
            for i, blk in enumerate(self.blocks):
                attn = blk(x, return_attention=True)
                x = blk(x)
                list_attn.append(attn)
            return torch.cat(list_attn, dim=0)

        else:
            for i, blk in enumerate(self.blocks):
                if i < len(self.blocks) - 1:
                    x = blk(x)
                else:
                    return blk(x, return_attention=True)

    def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)

        x = torch.cat((cls_tokens, x), dim=1)
        pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
        x = x + pos_embed
        x = self.pos_drop(x)

        # we will return the [CLS] tokens from the `n` last blocks
        output = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if len(self.blocks) - i <= n:
                # get only CLS token (B x dim)
                output.append(self.norm(x)[:, 0])
        if return_patch_avgpool:
            x = self.norm(x)
            # In addition to the [CLS] tokens from the `n` last blocks, we also return 
            # the patch tokens from the last block. This is useful for linear eval.
            output.append(torch.mean(x[:, 1:], dim=1))
        return torch.cat(output, dim=-1)

    def return_patch_emb_from_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
        """Return intermediate patch embeddings, rather than CLS token, from the last n blocks."""
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)

        x = torch.cat((cls_tokens, x), dim=1)
        pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
        x = x + pos_embed
        x = self.pos_drop(x)

        # we will return the [CLS] tokens from the `n` last blocks
        output = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if len(self.blocks) - i <= n:
                output.append(self.norm(x)[:, 1:])  # get only CLS token (B x dim)

        if return_patch_avgpool:
            x = self.norm(x)
            # In addition to the [CLS] tokens from the `n` last blocks, we also return
            # the patch tokens from the last block. This is useful for linear eval.
            output.append(torch.mean(x[:, 1:], dim=1))
        return torch.stack(output, dim=-1)  # B x n_patches x dim x n


def deit_tiny(patch_size=16, **kwargs):
    model = VisionTransformer(
        patch_size=patch_size,
        embed_dim=192,
        depth=12,
        num_heads=3,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs)
    return model


def deit_small(patch_size=16, **kwargs):
    depth = kwargs.pop("depth") if "depth" in kwargs else 12
    model = VisionTransformer(
        patch_size=patch_size,
        embed_dim=384,
        depth=depth,
        num_heads=6,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


def vit_base(patch_size=16, **kwargs):
    model = VisionTransformer(
        patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model


class DINOHead(nn.Module):
    def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
        super().__init__()
        nlayers = max(nlayers, 1)
        if nlayers == 1:
            self.mlp = nn.Linear(in_dim, bottleneck_dim)
        else:
            layers = [nn.Linear(in_dim, hidden_dim)]
            if use_bn:
                layers.append(nn.BatchNorm1d(hidden_dim))
            layers.append(nn.GELU())
            for _ in range(nlayers - 2):
                layers.append(nn.Linear(hidden_dim, hidden_dim))
                if use_bn:
                    layers.append(nn.BatchNorm1d(hidden_dim))
                layers.append(nn.GELU())
            layers.append(nn.Linear(hidden_dim, bottleneck_dim))
            self.mlp = nn.Sequential(*layers)
        self.apply(self._init_weights)
        self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
        self.last_layer.weight_g.data.fill_(1)
        if norm_last_layer:
            self.last_layer.weight_g.requires_grad = False

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.mlp(x)
        x = nn.functional.normalize(x, dim=-1, p=2)
        x = self.last_layer(x)
        return x