Spaces:
Runtime error
Runtime error
File size: 20,618 Bytes
35188e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from typing import Optional
import math
from functools import partial
import torch
import torch.nn as nn
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.",
stacklevel=2
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5 # square root of dimension for normalisation
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape # B x (cls token + # patch tokens) x dim
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# qkv: 3 x B x Nh x (cls token + # patch tokens) x (dim // Nh)
q, k, v = qkv[0], qkv[1], qkv[2]
# q, k, v: B x Nh x (cls token + # patch tokens) x (dim // Nh)
# q: B x Nh x (cls token + # patch tokens) x (dim // Nh)
# k.transpose(-2, -1) = B x Nh x (dim // Nh) x (cls token + # patch tokens)
# attn: B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
attn = (q @ k.transpose(-2, -1)) * self.scale # @ operator is for matrix multiplication
attn = attn.softmax(dim=-1) # B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
attn = self.attn_drop(attn)
# attn = B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens)
# v = B x Nh x (cls token + # patch tokens) x (dim // Nh)
# attn @ v = B x Nh x (cls token + # patch tokens) x (dim // Nh)
# (attn @ v).transpose(1, 2) = B x (cls token + # patch tokens) x Nh x (dim // Nh)
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # B x (cls token + # patch tokens) x dim
x = self.proj(x) # B x (cls token + # patch tokens) x dim
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self,
dim, num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding"""
def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
x = x.flatten(2).transpose(1, 2) # B x (P_H * P_W) x C
return x
class VisionTransformer(nn.Module):
""" Vision Transformer """
def __init__(self,
img_size=(224, 224),
patch_size=16,
in_chans=3,
num_classes=0,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=(224, 224), # noel: this is to load pretrained model.
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.depth = depth
self.embed_dim = self.n_embs = embed_dim
self.mlp_ratio = mlp_ratio
self.n_heads = num_heads
self.patch_size = patch_size
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor:
"""Pad some pixels to make the input size divisible by the patch size."""
B, _, H_0, W_0 = x.shape
pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size
pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size
x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0)
return x
def prepare_tokens(self, x):
B, nc, h, w = x.shape
x: torch.Tensor = self.make_input_divisible(x)
patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = self.patch_embed(x) # patch linear embedding
# add positional encoding to each token
# add the [CLS] token to the embed patch tokens
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w))
return self.pos_drop(x)
@staticmethod
def split_token(x, token_type: str):
if token_type == "cls":
return x[:, 0, :]
elif token_type == "patch":
return x[:, 1:, :]
else:
return x
# noel
def forward(self, x, layer: Optional[str] = None):
x: torch.Tensor = self.prepare_tokens(x)
features: dict = {}
for i, blk in enumerate(self.blocks):
x = blk(x)
features[f"layer{i + 1}"] = self.norm(x)
if layer is not None:
return features[layer]
else:
return features
# noel - for DINO's visual
def get_last_selfattention(self, x):
x = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
# return attention of the last block
return blk(x, return_attention=True)
def get_tokens(
self,
x,
layers: list,
patch_tokens: bool = False,
norm: bool = True,
input_tokens: bool = False,
post_pe: bool = False
):
"""Return intermediate tokens."""
list_tokens: list = []
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if input_tokens:
list_tokens.append(x)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
if post_pe:
list_tokens.append(x)
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x) # B x # patches x dim
if layers is None or i in layers:
list_tokens.append(self.norm(x) if norm else x)
tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim
if not patch_tokens:
return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim
else:
return tokens
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
return x[:, 0]
def interpolate_pos_encoding(self, x, pos_embed, size):
"""Interpolate the learnable positional encoding to match the number of patches.
x: B x (1 + N patches) x dim_embedding
pos_embed: B x (1 + N patches) x dim_embedding
return interpolated positional embedding
"""
npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size)
N = pos_embed.shape[1] - 1 # 784 (= 28 x 28)
if npatch == N:
return pos_embed
class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings
dim = x.shape[-1] # dimension of embeddings
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28
size=size,
mode='bicubic',
align_corners=False
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
return pos_embed
def forward_selfattention(self, x, return_interm_attn=False):
B, nc, w, h = x.shape
N = self.pos_embed.shape[1] - 1
x = self.patch_embed(x)
# interpolate patch embeddings
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic'
)
if w0 != patch_pos_embed.shape[-2]:
helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device)
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
if h0 != patch_pos_embed.shape[-1]:
helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device)
pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
cls_tokens = self.cls_token.expand(B, -1, -1) # self.cls_token: 1 x 1 x emb_dim -> ?
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
if return_interm_attn:
list_attn = []
for i, blk in enumerate(self.blocks):
attn = blk(x, return_attention=True)
x = blk(x)
list_attn.append(attn)
return torch.cat(list_attn, dim=0)
else:
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
return blk(x, return_attention=True)
def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
# get only CLS token (B x dim)
output.append(self.norm(x)[:, 0])
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.cat(output, dim=-1)
def return_patch_emb_from_n_last_blocks(self, x, n=1, return_patch_avgpool=False):
"""Return intermediate patch embeddings, rather than CLS token, from the last n blocks."""
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x)[:, 1:]) # get only CLS token (B x dim)
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.stack(output, dim=-1) # B x n_patches x dim x n
def deit_tiny(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def deit_small(patch_size=16, **kwargs):
depth = kwargs.pop("depth") if "depth" in kwargs else 12
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=depth,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
def vit_base(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
class DINOHead(nn.Module):
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
super().__init__()
nlayers = max(nlayers, 1)
if nlayers == 1:
self.mlp = nn.Linear(in_dim, bottleneck_dim)
else:
layers = [nn.Linear(in_dim, hidden_dim)]
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
for _ in range(nlayers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
self.mlp = nn.Sequential(*layers)
self.apply(self._init_weights)
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
self.last_layer.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer.weight_g.requires_grad = False
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.mlp(x)
x = nn.functional.normalize(x, dim=-1, p=2)
x = self.last_layer(x)
return x
|