|
from config import * |
|
import os |
|
import numpy as np |
|
import cv2, wav2lip.audio |
|
import subprocess |
|
from tqdm import tqdm |
|
import glob |
|
import torch, wav2lip.face_detection |
|
from wav2lip.models import Wav2Lip |
|
import platform |
|
|
|
|
|
def get_smoothened_boxes(boxes, T): |
|
for i in range(len(boxes)): |
|
if i + T > len(boxes): |
|
window = boxes[len(boxes) - T:] |
|
else: |
|
window = boxes[i : i + T] |
|
boxes[i] = np.mean(window, axis=0) |
|
return boxes |
|
|
|
def face_detect(images): |
|
detector = wav2lip.face_detection.FaceAlignment(wav2lip.face_detection.LandmarksType._2D, flip_input=False, device=device) |
|
batch_size = face_det_batch_size |
|
|
|
while 1: |
|
predictions = [] |
|
try: |
|
for i in tqdm(range(0, len(images), batch_size)): |
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) |
|
except RuntimeError: |
|
if batch_size == 1: |
|
raise RuntimeError('Image too big to run face detection on GPU. Please change resize_factor') |
|
batch_size //= 2 |
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size)) |
|
continue |
|
break |
|
|
|
results = [] |
|
pady1, pady2, padx1, padx2 = pads |
|
for rect, image in zip(predictions, images): |
|
if rect is None: |
|
cv2.imwrite('temp/faulty_frame.jpg', image) |
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') |
|
|
|
y1 = max(0, rect[1] - pady1) |
|
y2 = min(image.shape[0], rect[3] + pady2) |
|
x1 = max(0, rect[0] - padx1) |
|
x2 = min(image.shape[1], rect[2] + padx2) |
|
|
|
results.append([x1, y1, x2, y2]) |
|
|
|
boxes = np.array(results) |
|
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5) |
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] |
|
|
|
del detector |
|
return results |
|
|
|
def datagen(frames, mels): |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if box[0] == -1: |
|
if not static: |
|
face_det_results = face_detect(frames) |
|
else: |
|
face_det_results = face_detect([frames[0]]) |
|
else: |
|
print('Using the specified bounding box instead of face detection...') |
|
y1, y2, x1, x2 = box |
|
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] |
|
|
|
for i, m in enumerate(mels): |
|
idx = 0 if static else i%len(frames) |
|
frame_to_save = frames[idx].copy() |
|
face, coords = face_det_results[idx].copy() |
|
|
|
face = cv2.resize(face, (img_size, img_size)) |
|
|
|
img_batch.append(face) |
|
mel_batch.append(m) |
|
frame_batch.append(frame_to_save) |
|
coords_batch.append(coords) |
|
|
|
if len(img_batch) >= wav2lip_batch_size: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, img_size//2:] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if len(img_batch) > 0: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, img_size//2:] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
|
|
|
|
|
|
def _load(checkpoint_path): |
|
if device == 'cuda': |
|
checkpoint = torch.load(checkpoint_path) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) |
|
|
|
return checkpoint |
|
|
|
def load_model(path): |
|
model = Wav2Lip() |
|
print("Load checkpoint from: {}".format(path)) |
|
checkpoint = _load(path) |
|
s = checkpoint["state_dict"] |
|
new_s = {} |
|
for k, v in s.items(): |
|
new_s[k.replace('module.', '')] = v |
|
model.load_state_dict(new_s) |
|
|
|
model = model.to(device) |
|
return model.eval() |
|
|
|
def modify_lips(path_id, audiofile, animatedfile, outfilePath): |
|
animatedfilePath = os.path.join("temp", path_id, animatedfile) |
|
audiofilePath = os.path.join("temp", path_id, audiofile) |
|
tempAudioPath = os.path.join("temp", path_id, "temp.wav") |
|
tempVideoPath = os.path.join("temp", path_id, "temp.avi") |
|
|
|
if not os.path.isfile(animatedfilePath): |
|
raise ValueError('--face argument must be a valid path to video/image file') |
|
|
|
elif animatedfilePath.split('.')[1] in ['jpg', 'png', 'jpeg']: |
|
full_frames = [cv2.imread(animatedfilePath)] |
|
fps = fps |
|
|
|
else: |
|
video_stream = cv2.VideoCapture(animatedfilePath) |
|
fps = video_stream.get(cv2.CAP_PROP_FPS) |
|
|
|
print('Reading video frames...') |
|
|
|
full_frames = [] |
|
while 1: |
|
still_reading, frame = video_stream.read() |
|
if not still_reading: |
|
video_stream.release() |
|
break |
|
if resize_factor > 1: |
|
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor)) |
|
|
|
if rotate: |
|
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) |
|
|
|
y1, y2, x1, x2 = crop |
|
if x2 == -1: x2 = frame.shape[1] |
|
if y2 == -1: y2 = frame.shape[0] |
|
|
|
frame = frame[y1:y2, x1:x2] |
|
|
|
full_frames.append(frame) |
|
|
|
print ("Number of frames available for inference: "+str(len(full_frames))) |
|
|
|
print('Extracting raw audio...') |
|
command = 'ffmpeg -y -i {} -strict -2 {}'.format(audiofilePath, tempAudioPath) |
|
subprocess.call(command, shell=True) |
|
|
|
|
|
wav = wav2lip.audio.load_wav(tempAudioPath, 16000) |
|
mel = wav2lip.audio.melspectrogram(wav) |
|
print(mel.shape) |
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0: |
|
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') |
|
|
|
mel_chunks = [] |
|
mel_idx_multiplier = 80./fps |
|
i = 0 |
|
while 1: |
|
start_idx = int(i * mel_idx_multiplier) |
|
if start_idx + mel_step_size > len(mel[0]): |
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) |
|
break |
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) |
|
i += 1 |
|
|
|
print("Length of mel chunks: {}".format(len(mel_chunks))) |
|
|
|
full_frames = full_frames[:len(mel_chunks)] |
|
|
|
batch_size = wav2lip_batch_size |
|
gen = datagen(full_frames.copy(), mel_chunks) |
|
|
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks))/batch_size)))): |
|
if i == 0: |
|
model = load_model(checkpoint_path) |
|
print ("Model loaded") |
|
|
|
frame_h, frame_w = full_frames[0].shape[:-1] |
|
out = cv2.VideoWriter(tempVideoPath, cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) |
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) |
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) |
|
|
|
with torch.no_grad(): |
|
pred = model(mel_batch, img_batch) |
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. |
|
|
|
for p, f, c in zip(pred, frames, coords): |
|
y1, y2, x1, x2 = c |
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) |
|
|
|
f[y1:y2, x1:x2] = p |
|
out.write(f) |
|
|
|
out.release() |
|
|
|
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(tempAudioPath, tempVideoPath, outfilePath) |
|
subprocess.call(command, shell=platform.system() != 'Windows') |
|
|
|
|
|
|
|
|
|
|