|
import gradio as gr |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
import moviepy.editor as mp |
|
from pydub import AudioSegment |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import tempfile |
|
import uuid |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to("cuda") |
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
@spaces.GPU |
|
def fn(vid): |
|
|
|
video = mp.VideoFileClip(vid) |
|
|
|
|
|
audio = video.audio |
|
|
|
|
|
frames = video.iter_frames(fps=12) |
|
|
|
|
|
processed_frames = [] |
|
for frame in frames: |
|
pil_image = Image.fromarray(frame) |
|
processed_image = process(pil_image) |
|
processed_frames.append(np.array(processed_image)) |
|
|
|
|
|
processed_video = mp.ImageSequenceClip(processed_frames, fps=12) |
|
|
|
|
|
processed_video = processed_video.set_audio(audio) |
|
|
|
|
|
temp_dir = "temp" |
|
os.makedirs(temp_dir, exist_ok=True) |
|
unique_filename = str(uuid.uuid4()) + ".mp4" |
|
temp_filepath = os.path.join(temp_dir, unique_filename) |
|
processed_video.write_videofile(temp_filepath, codec="libx264") |
|
|
|
|
|
return temp_filepath |
|
|
|
|
|
def process(image): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
|
|
|
|
green_screen = Image.new("RGBA", image_size, (0, 255, 0, 255)) |
|
|
|
|
|
image = Image.composite(image, green_screen, mask) |
|
|
|
return image |
|
|
|
|
|
def process_file(f): |
|
name_path = f.rsplit(".", 1)[0] + ".png" |
|
im = load_img(f, output_type="pil") |
|
im = im.convert("RGB") |
|
transparent = process(im) |
|
transparent.save(name_path) |
|
return name_path |
|
|
|
|
|
in_video = gr.Video(label="birefnet") |
|
out_video = gr.Video() |
|
|
|
|
|
demo = gr.Interface( |
|
fn, inputs=in_video, outputs=out_video, api_name="video" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_error=True) |