|
import os |
|
from PIL import Image |
|
from typing import Union |
|
import numpy as np |
|
import cv2 |
|
from diffusers.image_processor import VaeImageProcessor |
|
import torch |
|
|
|
from model.SCHP import SCHP |
|
from model.DensePose import DensePose |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DENSE_INDEX_MAP = { |
|
"background": [0], |
|
"torso": [1, 2], |
|
"right hand": [3], |
|
"left hand": [4], |
|
"right foot": [5], |
|
"left foot": [6], |
|
"right thigh": [7, 9], |
|
"left thigh": [8, 10], |
|
"right leg": [11, 13], |
|
"left leg": [12, 14], |
|
"left big arm": [15, 17], |
|
"right big arm": [16, 18], |
|
"left forearm": [19, 21], |
|
"right forearm": [20, 22], |
|
"face": [23, 24], |
|
"thighs": [7, 8, 9, 10], |
|
"legs": [11, 12, 13, 14], |
|
"hands": [3, 4], |
|
"feet": [5, 6], |
|
"big arms": [15, 16, 17, 18], |
|
"forearms": [19, 20, 21, 22], |
|
} |
|
|
|
ATR_MAPPING = { |
|
'Background': 0, 'Hat': 1, 'Hair': 2, 'Sunglasses': 3, |
|
'Upper-clothes': 4, 'Skirt': 5, 'Pants': 6, 'Dress': 7, |
|
'Belt': 8, 'Left-shoe': 9, 'Right-shoe': 10, 'Face': 11, |
|
'Left-leg': 12, 'Right-leg': 13, 'Left-arm': 14, 'Right-arm': 15, |
|
'Bag': 16, 'Scarf': 17 |
|
} |
|
|
|
LIP_MAPPING = { |
|
'Background': 0, 'Hat': 1, 'Hair': 2, 'Glove': 3, |
|
'Sunglasses': 4, 'Upper-clothes': 5, 'Dress': 6, 'Coat': 7, |
|
'Socks': 8, 'Pants': 9, 'Jumpsuits': 10, 'Scarf': 11, |
|
'Skirt': 12, 'Face': 13, 'Left-arm': 14, 'Right-arm': 15, |
|
'Left-leg': 16, 'Right-leg': 17, 'Left-shoe': 18, 'Right-shoe': 19 |
|
} |
|
|
|
PROTECT_BODY_PARTS = { |
|
'upper': ['Left-leg', 'Right-leg'], |
|
'lower': ['Right-arm', 'Left-arm', 'Face'], |
|
'overall': [], |
|
'inner': ['Left-leg', 'Right-leg'], |
|
'outer': ['Left-leg', 'Right-leg'], |
|
} |
|
PROTECT_CLOTH_PARTS = { |
|
'upper': { |
|
'ATR': ['Skirt', 'Pants'], |
|
'LIP': ['Skirt', 'Pants'] |
|
}, |
|
'lower': { |
|
'ATR': ['Upper-clothes'], |
|
'LIP': ['Upper-clothes', 'Coat'] |
|
}, |
|
'overall': { |
|
'ATR': [], |
|
'LIP': [] |
|
}, |
|
'inner': { |
|
'ATR': ['Dress', 'Coat', 'Skirt', 'Pants'], |
|
'LIP': ['Dress', 'Coat', 'Skirt', 'Pants', 'Jumpsuits'] |
|
}, |
|
'outer': { |
|
'ATR': ['Dress', 'Pants', 'Skirt'], |
|
'LIP': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Jumpsuits'] |
|
} |
|
} |
|
MASK_CLOTH_PARTS = { |
|
'upper': ['Upper-clothes', 'Coat', 'Dress', 'Jumpsuits'], |
|
'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits'], |
|
'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits'], |
|
'inner': ['Upper-clothes'], |
|
'outer': ['Coat',] |
|
} |
|
MASK_DENSE_PARTS = { |
|
'upper': ['torso', 'big arms', 'forearms'], |
|
'lower': ['thighs', 'legs'], |
|
'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'], |
|
'inner': ['torso'], |
|
'outer': ['torso', 'big arms', 'forearms'] |
|
} |
|
|
|
schp_public_protect_parts = ['Hat', 'Hair', 'Sunglasses', 'Left-shoe', 'Right-shoe', 'Bag', 'Glove', 'Scarf'] |
|
schp_protect_parts = { |
|
'upper': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits'], |
|
'lower': ['Left-arm', 'Right-arm', 'Upper-clothes', 'Coat'], |
|
'overall': [], |
|
'inner': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Coat'], |
|
'outer': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Upper-clothes'] |
|
} |
|
schp_mask_parts = { |
|
'upper': ['Upper-clothes', 'Dress', 'Coat', 'Jumpsuits'], |
|
'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits', 'socks'], |
|
'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits', 'socks'], |
|
'inner': ['Upper-clothes'], |
|
'outer': ['Coat',] |
|
} |
|
|
|
dense_mask_parts = { |
|
'upper': ['torso', 'big arms', 'forearms'], |
|
'lower': ['thighs', 'legs'], |
|
'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'], |
|
'inner': ['torso'], |
|
'outer': ['torso', 'big arms', 'forearms'] |
|
} |
|
|
|
|
|
def save_mask(mask: np.ndarray, file_path: str): |
|
|
|
mask_image = Image.fromarray(mask.astype(np.uint8) * 255) |
|
mask_image.save(file_path) |
|
|
|
def vis_mask(image, mask): |
|
image = np.array(image).astype(np.uint8) |
|
mask = np.array(mask).astype(np.uint8) |
|
mask[mask > 127] = 255 |
|
mask[mask <= 127] = 0 |
|
mask = np.expand_dims(mask, axis=-1) |
|
mask = np.repeat(mask, 3, axis=-1) |
|
mask = mask / 255 |
|
return Image.fromarray((image * (1 - mask)).astype(np.uint8)) |
|
|
|
def part_mask_of(part: Union[str, list], |
|
parse: np.ndarray, mapping: dict): |
|
if isinstance(part, str): |
|
part = [part] |
|
mask = np.zeros_like(parse) |
|
for _ in part: |
|
if _ not in mapping: |
|
continue |
|
if isinstance(mapping[_], list): |
|
for i in mapping[_]: |
|
mask += (parse == i) |
|
else: |
|
mask += (parse == mapping[_]) |
|
return mask |
|
|
|
def hull_mask(mask_area: np.ndarray): |
|
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY) |
|
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
hull_mask = np.zeros_like(mask_area) |
|
for c in contours: |
|
hull = cv2.convexHull(c) |
|
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask |
|
return hull_mask |
|
|
|
|
|
class AutoMasker: |
|
def __init__( |
|
self, |
|
densepose_ckpt='./Models/DensePose', |
|
schp_ckpt='./Models/SCHP', |
|
device='cuda'): |
|
np.random.seed(0) |
|
torch.manual_seed(0) |
|
torch.cuda.manual_seed(0) |
|
|
|
self.densepose_processor = DensePose(densepose_ckpt, device) |
|
self.schp_processor_atr = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908301523-atr.pth'), device=device) |
|
self.schp_processor_lip = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908261155-lip.pth'), device=device) |
|
|
|
self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) |
|
|
|
|
|
def process_densepose(self, image_or_path): |
|
return self.densepose_processor(image_or_path, resize=1024) |
|
|
|
def process_schp_lip(self, image_or_path): |
|
return self.schp_processor_lip(image_or_path) |
|
|
|
def process_schp_atr(self, image_or_path): |
|
return self.schp_processor_atr(image_or_path) |
|
|
|
def preprocess_image(self, image_or_path): |
|
return { |
|
'densepose': self.densepose_processor(image_or_path, resize=1024), |
|
'schp_atr': self.schp_processor_atr(image_or_path), |
|
'schp_lip': self.schp_processor_lip(image_or_path) |
|
} |
|
|
|
@staticmethod |
|
def cloth_agnostic_mask( |
|
densepose_mask: Image.Image, |
|
schp_lip_mask: Image.Image, |
|
schp_atr_mask: Image.Image, |
|
part: str='overall', |
|
**kwargs |
|
): |
|
assert part in ['upper', 'lower', 'overall', 'inner', 'outer'], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}" |
|
w, h = densepose_mask.size |
|
|
|
dilate_kernel = max(w, h) // 250 |
|
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1 |
|
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8) |
|
|
|
kernal_size = max(w, h) // 25 |
|
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1 |
|
|
|
densepose_mask = np.array(densepose_mask) |
|
schp_lip_mask = np.array(schp_lip_mask) |
|
schp_atr_mask = np.array(schp_atr_mask) |
|
|
|
save_mask(schp_lip_mask, "lip.png") |
|
|
|
|
|
hands_protect_area = part_mask_of(['hands', 'feet'], densepose_mask, DENSE_INDEX_MAP) |
|
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1) |
|
hands_protect_area = hands_protect_area & \ |
|
(part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_atr_mask, ATR_MAPPING) | \ |
|
part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_lip_mask, LIP_MAPPING)) |
|
face_protect_area = part_mask_of('Face', schp_lip_mask, LIP_MAPPING) |
|
|
|
strong_protect_area = hands_protect_area | face_protect_area |
|
|
|
|
|
body_protect_area = part_mask_of(PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING) |
|
hair_protect_area = part_mask_of(['Hair'], schp_lip_mask, LIP_MAPPING) | \ |
|
part_mask_of(['Hair'], schp_atr_mask, ATR_MAPPING) |
|
cloth_protect_area = part_mask_of(PROTECT_CLOTH_PARTS[part]['LIP'], schp_lip_mask, LIP_MAPPING) | \ |
|
part_mask_of(PROTECT_CLOTH_PARTS[part]['ATR'], schp_atr_mask, ATR_MAPPING) |
|
accessory_protect_area = part_mask_of((accessory_parts := ['Hat', 'Glove', 'Sunglasses', 'Bag', 'Left-shoe', 'Right-shoe', 'Scarf', 'Socks']), schp_lip_mask, LIP_MAPPING) | \ |
|
part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING) |
|
weak_protect_area = body_protect_area | cloth_protect_area | hair_protect_area | strong_protect_area | accessory_protect_area |
|
|
|
|
|
strong_mask_area = part_mask_of(MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING) | \ |
|
part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING) |
|
background_area = part_mask_of(['Background'], schp_lip_mask, LIP_MAPPING) & part_mask_of(['Background'], schp_atr_mask, ATR_MAPPING) |
|
mask_dense_area = part_mask_of(MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP) |
|
mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST) |
|
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2) |
|
mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST) |
|
|
|
|
|
mask_area = (np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)) | mask_dense_area |
|
|
|
mask_area = hull_mask(mask_area * 255) // 255 |
|
mask_area = mask_area & (~weak_protect_area) |
|
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0) |
|
mask_area[mask_area < 25] = 0 |
|
mask_area[mask_area >= 25] = 1 |
|
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area) |
|
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1) |
|
|
|
return Image.fromarray(mask_area * 255) |
|
|
|
def __call__( |
|
self, |
|
image: Union[str, Image.Image], |
|
mask_type: str = "upper", |
|
): |
|
assert mask_type in ['upper', 'lower', 'overall', 'inner', 'outer'], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}" |
|
preprocess_results = self.preprocess_image(image) |
|
mask = self.cloth_agnostic_mask( |
|
preprocess_results['densepose'], |
|
preprocess_results['schp_lip'], |
|
preprocess_results['schp_atr'], |
|
part=mask_type, |
|
) |
|
return { |
|
'mask': mask, |
|
'densepose': preprocess_results['densepose'], |
|
'schp_lip': preprocess_results['schp_lip'], |
|
'schp_atr': preprocess_results['schp_atr'] |
|
} |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |