fastAPI_CatVTON / api2.py
nrtoya's picture
0135
ea56a4f
"""
api.py๋Š” fastapi๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์ง€๋งŒ,
gradio๋ฅผ ์‚ฌ์šฉํ•œ ์›น ๋ฐ๋ชจ๋ฅผ ํ™•์ธํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด gradio ํด๋” ์•ˆ์— ์žˆ๋Š” app-final.py๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋œ๋‹ค
api.py์˜ ๋งˆ์Šคํ‚น ๋ถ€๋ถ„์„ ์ œ๋Œ€๋กœ ์ˆ˜์ •ํ•œ๊ฒŒ,
api2.py์ž„
"""
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
from pydantic import BaseModel
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
from test import morph_close, morph_open, morph_open2, extend_mask_downward, extend_mask_downward2, image_equal
import cv2
from fastapi import FastAPI, File, Form, UploadFile, WebSocket, WebSocketDisconnect
from typing import List
from typing import Optional
import shutil
from fastapi.responses import JSONResponse
import uuid
import base64
from io import BytesIO
from fastapi.middleware.cors import CORSMiddleware
import asyncio
app = FastAPI()
origins = [
"http://localhost",
"http://localhost:8080",
"http://localhost:3000",
"http://127.0.0.1:8080",
"http://127.0.0.1:3000",
]
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can set this to specific origins instead of '*' for security
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# app.add_middleware(
# CORSMiddleware,
# allow_origins=origins,
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
print ('starting app')
# api ์—ฐ๊ฒฐํ•˜๋ฉด์„œ ์ถ”๊ฐ€ํ•œ ์ฝ”๋“œ
def pil_to_base64(img: Image.Image) -> str:
buffer = BytesIO()
img.save(buffer, format="PNG") # PNG ํ˜•์‹์œผ๋กœ ์ €์žฅ
return base64.b64encode(buffer.getvalue()).decode("utf-8")
# GPU์—์„œ ํ˜„์žฌ ํ• ๋‹น๋œ ๋ฉ”๋ชจ๋ฆฌ ํ™•์ธ (GPU 0๋ฒˆ ๊ธฐ์ค€)
#allocated_memory = torch.cuda.memory_allocated(0)
#print(f"GPU 0์—์„œ ํ• ๋‹น๋œ ๋ฉ”๋ชจ๋ฆฌ: {allocated_memory / (1024 ** 2)} MB") # MB๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ถœ๋ ฅ
# ์„ค์ •๊ฐ’์„ ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋กœ ์ •์˜
BASE_MODEL_PATH = os.getenv("BASE_MODEL_PATH", "booksforcharlie/stable-diffusion-inpainting")
RESUME_PATH = os.getenv("RESUME_PATH", "zhengchong/CatVTON")
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "resource/demo/output")
WIDTH = int(os.getenv("WIDTH", 768))
HEIGHT = int(os.getenv("HEIGHT", 1024))
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
repo_path = snapshot_download(repo_id=RESUME_PATH)
print ('repo_path')
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=BASE_MODEL_PATH,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype("no"),
use_tf32=True,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
@spaces.GPU(duration=120)
# ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ fitting_type ์ถ”๊ฐ€ํ•ด์•ผ ํ•จ. cloth_type ๋ฐ‘์—.
async def submit_function(
person_image,
cloth_image,
cloth_type,
fitting_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
#person_image, mask = person_image["background"], person_image["layers"][0] # person_image["layers"][0]์ด ์œ ์ €๊ฐ€ ๊ทธ๋ฆฐ ๋งˆ์Šคํฌ ๋ ˆ์ด์–ด์ž„.
#mask = Image.open(mask).convert("L")
#if len(np.unique(np.array(mask))) == 1:
# mask = None # ์‚ฌ์šฉ์ž๊ฐ€ ๋งˆ์Šคํฌ๋ฅผ ๊ทธ๋ฆฌ์ง€ ์•Š์€ ๊ฒฝ์šฐ.
#else:
# mask = np.array(mask)
# mask[mask > 0] = 255 # ๋ฐฐ๊ฒฝ์ด ๊ฒ€์€์ƒ‰.
# mask = Image.fromarray(mask)
mask = None
tmp_folder = "resource/demo/output"
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (768, 1024))
cloth_image = resize_and_padding(cloth_image, (768, 1024))
#์˜ˆ์™ธ์ฒ˜๋ฆฌ
#man
compare_image_mlvl0 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
compare_image_mlvl0 = resize_and_crop(compare_image_mlvl0, (768, 1024))
compare_image_mlvl1 = Image.open("./resource/demo/example/person/men/m_lvl1.png").convert("RGB")
compare_image_mlvl1 = resize_and_crop(compare_image_mlvl1, (768, 1024))
compare_image_mlvl2 = Image.open("./resource/demo/example/person/men/m_lvl2.png").convert("RGB")
compare_image_mlvl2 = resize_and_crop(compare_image_mlvl2, (768, 1024))
compare_image_mlvl3 = Image.open("./resource/demo/example/person/men/m_lvl3.png").convert("RGB")
compare_image_mlvl3 = resize_and_crop(compare_image_mlvl3, (768, 1024))
#womam
compare_image_wlvl0 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
compare_image_wlvl0 = resize_and_crop(compare_image_wlvl0, (768, 1024))
compare_image_wlvl1 = Image.open("./resource/demo/example/person/women/w_lvl1.png").convert("RGB")
compare_image_wlvl1 = resize_and_crop(compare_image_wlvl1, (768, 1024))
compare_image_wlvl2 = Image.open("./resource/demo/example/person/women/w_lvl2.png").convert("RGB")
compare_image_wlvl2 = resize_and_crop(compare_image_wlvl2, (768, 1024))
compare_image_wlvl3 = Image.open("./resource/demo/example/person/women/w_lvl3.png").convert("RGB")
compare_image_wlvl3 = resize_and_crop(compare_image_wlvl3, (768, 1024))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (WIDTH, HEIGHT))
else:
if image_equal(person_image, compare_image_mlvl3):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl3):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
# ์ดํ›„ ์ฒ˜๋ฆฌ
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_mlvl2):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl2):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
# ์ดํ›„ ์ฒ˜๋ฆฌ
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_mlvl1):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl1):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
# ์ดํ›„ ์ฒ˜๋ฆฌ
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_mlvl0):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl0):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (WIDTH, HEIGHT))
mask = automasker(
person_image2,
cloth_type
)['mask']
# ์ดํ›„ ์ฒ˜๋ฆฌ
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
else:
mask = automasker(
person_image,
cloth_type
)['mask']
# mask.save("./app_mask_created.png")
# ๊ฐ€๋” bmi์ง€์ˆ˜ ๋†’์€ ์•„๋ฐ”ํƒ€์˜ ๊ฒฝ์šฐ, upper mask๋ฅผ ์ •ํ™•ํžˆ ์ƒ์„ฑํ•ด๋‚ด์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์–ด ์ˆ˜๋™์œผ๋กœ ํ•œ ๋ฒˆ ๋” ์ฒ˜๋ฆฌํ•ด์คŒ.
# ํŠ€์–ด๋‚˜์˜จ ๋ถ€๋ถ„ ๋ฐ€์–ด๋ฒ„๋ฆฌ๊ธฐ (๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ๊ทธ๋ฆฐ mask์— ๋Œ€ํ•ด์„œ๋Š” ์‹œํ–‰๋˜๋ฉด ์•ˆ๋˜๋ฏ€๋กœ, else๋ฌธ ์•ˆ์— ๋„ฃ์–ด๋‘๊ธฐ)
#if cloth_type == "upper":
# height = (np.array(mask)).shape[0]
# y_threshold = int(height * 0.7) # ์ด๋ฏธ์ง€ ๋†’์ด์˜ 50ํผ์„ผํŠธ ์ดํ•˜. 50ํผ์„ผํŠธ๊ฐ€ ๋”ฑ ์ ๋‹นํ•จ.
# ๋ฐ‘๋ถ€๋ถ„ ์ œ๊ฑฐ
# mask = remove_bottom_part(np.array(mask), y_threshold)
# ์œ„ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•ด๊ฒฐ ๋ถˆ๊ฐ€์ž„. ํŠ€์–ด๋‚˜์˜จ ๋ถ€๋ถ„
# input ๋œ target ์ด๋ฏธ์ง€๋งˆ๋‹ค, ์ƒ์„ฑ๋˜๋Š” mask ์˜์—ญ์˜ ํฌ๊ธฐ๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ. mask ํŒŒ์ผ ์ž์ฒด์˜ ํฌ๊ธฐ๋Š” ๊ฐ™์„ ์ง€์–ธ์ •.
# ์ถ”๊ฐ€๋กœ Fitting Type์— ๋”ฐ๋ผ ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (else๋ฌธ ๋‚ด๋ถ€)
if fitting_type == "standard":
# mlvl3์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
if image_equal(person_image, compare_image_mlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl2์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl1์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl0์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl3์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl2์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl1์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl0์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# ๊ทธ ์™ธ ๋””ํดํŠธ
# flag2
else:
if cloth_type == "upper":
opened_mask = morph_open(mask)
extended_mask = extend_mask_downward2(np.array(mask), pixels=50)
mask = extended_mask
else:
opened_mask = morph_open(mask)
extended_mask = extend_mask_downward(np.array(mask), pixels=70)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_open(final_mask)
mask = final_mask
elif fitting_type == "loose" :
# mlvl3์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
if image_equal(person_image, compare_image_mlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl2์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl1์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl0์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl3์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl2์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "upper":
# flag
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1110)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
# final_mask = morph_close(morph_open(final_mask)) ์›๋ž˜ ์ฃผ์„ ์•„๋‹Œ๋ฐ ์ฃผ์„์ฒ˜๋ฆฌํ•จ. 1110
mask = final_mask
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl1์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl0์— ๋Œ€ํ•œ upper lower ๊ฐ๊ฐ.
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (WIDTH, HEIGHT))
sam_mask_upper_np = np.array(sam_mask_upper)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (WIDTH, HEIGHT))
sam_mask_lower_np = np.array(sam_mask_lower)
# ์ถ”๊ฐ€ํ•œ ๋ถ€๋ถ„ (1113)
kernel = np.ones((40, 40), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#์ตœ์ข… ๋งˆ์Šคํฌ ์ฒ˜๋ฆฌ (test.py ์„ค๋ช… ์ฐธ๊ณ )
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# ๊ทธ ์™ธ ๋””ํดํŠธ
else:
if cloth_type == "upper":
opened_mask = morph_open(mask)
extended_mask = extend_mask_downward2(np.array(mask), pixels=70)
mask = extended_mask
else:
opened_mask = morph_open(mask)
extended_mask = extend_mask_downward(np.array(mask), pixels=100)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
#morph_open ๊ฐ์‹ธ๋˜ morph_close ์—†์•ฐ.
final_mask = morph_open(final_mask)
mask = final_mask
# ๋ธ”๋Ÿฌ์ฒ˜๋ฆฌ
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
# try:
# result_image = pipeline(
# image=person_image,
# condition_image=cloth_image,
# mask=mask,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# generator=generator
# )[0]
# print(pipeline.progress)
# except Exception as e:
# raise gr.Error(
# "An error occurred. Please try again later: {}".format(e)
# )
#inside of submit_function
pipeline.progress = 0.02
pipeline_future = asyncio.to_thread(
pipeline,
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)
# Immediately print progress after starting pipeline()
#print(pipeline.progress)
await asyncio.sleep(1)
async def print_progress():
print('starting printing progress: ', pipeline_future)
while pipeline.progress < 0.9:
print(f"Progress: {pipeline.progress}")
await asyncio.sleep(1)
# Optionally, print the final progress after completion
print(f"Final Progress: {pipeline.progress}")
progress_task = asyncio.create_task(print_progress())
#await print_progress()
#progress_task
result = await pipeline_future
# Wait for the result_image after the print statement
result_image = result[0]
await progress_task
# Post-process
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
if show_type == "result only":
return {"result_image": result_image, "masked_person": masked_person}
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
#add websocket related function inside process_image or submit_function so that it sends the progress every 1 second
# FastAPI ํ•จ์ˆ˜ ์ •์˜
@app.post("/process-image")
async def process_image(
cloth_type: str = Form(...),
fitting_type: str = Form(...),
person_image: UploadFile = File(...),
cloth_image: UploadFile = File(...)
):
try:
# ๊ณ ์œ ํ•œ ํŒŒ์ผ ์ด๋ฆ„ ์ƒ์„ฑ
person_filename = f"received_{uuid.uuid4().hex}_{person_image.filename}"
cloth_filename = f"received_{uuid.uuid4().hex}_{cloth_image.filename}"
print ('person_filename: ', person_filename)
print ('cloth_filename: ', cloth_filename)
# ์ด๋ฏธ์ง€ ์ €์žฅ ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
os.makedirs("uploads", exist_ok=True)
# ์—…๋กœ๋“œ๋œ ์ด๋ฏธ์ง€ ์ €์žฅ
person_path = os.path.join("uploads", person_filename)
cloth_path = os.path.join("uploads", cloth_filename)
with open(person_path, "wb") as buffer:
shutil.copyfileobj(person_image.file, buffer)
with open(cloth_path, "wb") as buffer:
shutil.copyfileobj(cloth_image.file, buffer)
pipeline.progress = 0.02
# ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ํ•จ์ˆ˜ ํ˜ธ์ถœ
# num inference : 50๋ณด๋‹ค 25๊ฐ€ ๋‚˜์€๋“ฏ
result = await submit_function(
person_image=person_path,
cloth_image=cloth_path,
cloth_type=cloth_type,
fitting_type=fitting_type,
num_inference_steps=25,
guidance_scale=2.5,
seed=42,
show_type='result only'
)
print ('processing done')
# ๋ฐ˜ํ™˜๋œ ์ด๋ฏธ์ง€ ์ถ”์ถœ
result_image = result['result_image']
masked_person = result['masked_person']
result_image.save('results/result.png')
# ์ด๋ฏธ์ง€๋ฅผ Base64๋กœ ์ธ์ฝ”๋”ฉ
result_image_b64 = pil_to_base64(result_image)
masked_person_b64 = pil_to_base64(masked_person)
# ์ž„์‹œ ํŒŒ์ผ ์‚ญ์ œ (ํ•„์š” ์‹œ)
os.remove(person_path)
os.remove(cloth_path)
return {
"message": "์ด๋ฏธ์ง€๊ฐ€ ์ฒ˜๋ฆฌ๋˜์—ˆ์Šต๋‹ˆ๋‹ค",
"result_image": result_image_b64,
"masked_person": masked_person_b64
}
except Exception as e:
return JSONResponse(status_code=500, content={"message": f"์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}"})
#blocking language
#syncronous language
@app.websocket("/ws/")
async def websocket_endpoint(websocket: WebSocket):
print('awaiting websocket connection')
await websocket.accept()
print ('websocket accepted')
try:
while True:
if pipeline.progress >= 0.94:
await asyncio.sleep(0.1);
if pipeline.progress >= 0.94:
break
if pipeline.progress < 0.02:
pipeline.progress = 0.02
await websocket.send_text(f"{pipeline.progress}")
await asyncio.sleep(0.5)
await websocket.send_text("Processing complete")
except WebSocketDisconnect:
print(f"Client disconnected")
finally:
await websocket.close()
@app.post("/send-to-ssh")
async def send_to_ssh(
cloth_type: str = Form(...),
fitting_type: str = Form(...),
person_image: UploadFile = File(...), # ์ด๋ฏธ์ง€ ํŒŒ์ผ ์—…๋กœ๋“œ๋กœ ์ฒ˜๋ฆฌ
cloth_image: UploadFile = File(...)
):
# ๋ฐ›์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜ ์ €์žฅํ•˜๋Š” ๋กœ์ง
return {"message": "๋ฐ์ดํ„ฐ๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์ฒ˜๋ฆฌ๋˜์—ˆ์Šต๋‹ˆ๋‹ค."}
@app.get('/test')
async def test():
return JSONResponse(status_code=200, content={"message": "hello"})
def person_example_fn(image_path):
return image_path