Spaces:
No application file
No application file
import os | |
import math | |
import PIL | |
import numpy as np | |
import torch | |
from PIL import Image | |
from accelerate.state import AcceleratorState | |
from packaging import version | |
import accelerate | |
from typing import List, Optional, Tuple | |
from torch.nn import functional as F | |
from diffusers import UNet2DConditionModel, SchedulerMixin | |
# Compute DREAM and update latents for diffusion sampling | |
def compute_dream_and_update_latents_for_inpaint( | |
unet: UNet2DConditionModel, | |
noise_scheduler: SchedulerMixin, | |
timesteps: torch.Tensor, | |
noise: torch.Tensor, | |
noisy_latents: torch.Tensor, | |
target: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
dream_detail_preservation: float = 1.0, | |
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: | |
""" | |
Implements "DREAM (Diffusion Rectification and Estimation-Adaptive Models)" from http://arxiv.org/abs/2312.00210. | |
DREAM helps align training with sampling to help training be more efficient and accurate at the cost of an extra | |
forward step without gradients. | |
Args: | |
`unet`: The state unet to use to make a prediction. | |
`noise_scheduler`: The noise scheduler used to add noise for the given timestep. | |
`timesteps`: The timesteps for the noise_scheduler to user. | |
`noise`: A tensor of noise in the shape of noisy_latents. | |
`noisy_latents`: Previously noise latents from the training loop. | |
`target`: The ground-truth tensor to predict after eps is removed. | |
`encoder_hidden_states`: Text embeddings from the text model. | |
`dream_detail_preservation`: A float value that indicates detail preservation level. | |
See reference. | |
Returns: | |
`tuple[torch.Tensor, torch.Tensor]`: Adjusted noisy_latents and target. | |
""" | |
alphas_cumprod = noise_scheduler.alphas_cumprod.to(timesteps.device)[timesteps, None, None, None] | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# The paper uses lambda = sqrt(1 - alpha) ** p, with p = 1 in their experiments. | |
dream_lambda = sqrt_one_minus_alphas_cumprod**dream_detail_preservation | |
pred = None # b, 4, h, w | |
with torch.no_grad(): | |
pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
noisy_latents_no_condition = noisy_latents[:, :4] | |
_noisy_latents, _target = (None, None) | |
if noise_scheduler.config.prediction_type == "epsilon": | |
predicted_noise = pred | |
delta_noise = (noise - predicted_noise).detach() | |
delta_noise.mul_(dream_lambda) | |
_noisy_latents = noisy_latents_no_condition.add(sqrt_one_minus_alphas_cumprod * delta_noise) | |
_target = target.add(delta_noise) | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
raise NotImplementedError("DREAM has not been implemented for v-prediction") | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
_noisy_latents = torch.cat([_noisy_latents, noisy_latents[:, 4:]], dim=1) | |
return _noisy_latents, _target | |
# Prepare the input for inpainting model. | |
def prepare_inpainting_input( | |
noisy_latents: torch.Tensor, | |
mask_latents: torch.Tensor, | |
condition_latents: torch.Tensor, | |
enable_condition_noise: bool = True, | |
condition_concat_dim: int = -1, | |
) -> torch.Tensor: | |
""" | |
Prepare the input for inpainting model. | |
Args: | |
noisy_latents (torch.Tensor): Noisy latents. | |
mask_latents (torch.Tensor): Mask latents. | |
condition_latents (torch.Tensor): Condition latents. | |
enable_condition_noise (bool): Enable condition noise. | |
Returns: | |
torch.Tensor: Inpainting input. | |
""" | |
if not enable_condition_noise: | |
condition_latents_ = condition_latents.chunk(2, dim=condition_concat_dim)[-1] | |
noisy_latents = torch.cat([noisy_latents, condition_latents_], dim=condition_concat_dim) | |
noisy_latents = torch.cat([noisy_latents, mask_latents, condition_latents], dim=1) | |
return noisy_latents | |
# Compute VAE encodings | |
def compute_vae_encodings(image: torch.Tensor, vae: torch.nn.Module) -> torch.Tensor: | |
""" | |
Args: | |
images (torch.Tensor): image to be encoded | |
vae (torch.nn.Module): vae model | |
Returns: | |
torch.Tensor: latent encoding of the image | |
""" | |
pixel_values = image.to(memory_format=torch.contiguous_format).float() | |
pixel_values = pixel_values.to(vae.device, dtype=vae.dtype) | |
with torch.no_grad(): | |
model_input = vae.encode(pixel_values).latent_dist.sample() | |
model_input = model_input * vae.config.scaling_factor | |
return model_input | |
# Init Accelerator | |
from accelerate import Accelerator, DistributedDataParallelKwargs | |
from accelerate.utils import ProjectConfiguration | |
def init_accelerator(config): | |
accelerator_project_config = ProjectConfiguration( | |
project_dir=config.project_name, | |
logging_dir=os.path.join(config.project_name, "logs"), | |
) | |
accelerator_ddp_config = DistributedDataParallelKwargs(find_unused_parameters=True) | |
accelerator = Accelerator( | |
mixed_precision=config.mixed_precision, | |
log_with=config.report_to, | |
project_config=accelerator_project_config, | |
kwargs_handlers=[accelerator_ddp_config], | |
gradient_accumulation_steps=config.gradient_accumulation_steps, | |
) | |
# Disable AMP for MPS. | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
if accelerator.is_main_process: | |
accelerator.init_trackers( | |
project_name=config.project_name, | |
config={ | |
"learning_rate": config.learning_rate, | |
"train_batch_size": config.train_batch_size, | |
"image_size": f"{config.width}x{config.height}", | |
}, | |
) | |
return accelerator | |
def init_weight_dtype(wight_dtype): | |
return { | |
"no": torch.float32, | |
"fp16": torch.float16, | |
"bf16": torch.bfloat16, | |
}[wight_dtype] | |
def init_add_item_id(config): | |
return torch.tensor( | |
[ | |
config.height, | |
config.width * 2, | |
0, | |
0, | |
config.height, | |
config.width * 2, | |
] | |
).repeat(config.train_batch_size, 1) | |
def prepare_eval_data(dataset_root, dataset_name, is_pair=True): | |
assert dataset_name in ["vitonhd", "dresscode", "farfetch"], "Unknown dataset name {}.".format(dataset_name) | |
if dataset_name == "vitonhd": | |
data_root = os.path.join(dataset_root, "VITONHD-1024", "test") | |
if is_pair: | |
keys = os.listdir(os.path.join(data_root, "Images")) | |
cloth_image_paths = [ | |
os.path.join(data_root, "Images", key, key + "-0.jpg") for key in keys | |
] | |
person_image_paths = [ | |
os.path.join(data_root, "Images", key, key + "-1.jpg") for key in keys | |
] | |
else: | |
# read ../test_pairs.txt | |
cloth_image_paths = [] | |
person_image_paths = [] | |
with open( | |
os.path.join(dataset_root, "VITONHD-1024", "test_pairs.txt"), "r" | |
) as f: | |
lines = f.readlines() | |
for line in lines: | |
cloth_image, person_image = ( | |
line.replace(".jpg", "").strip().split(" ") | |
) | |
cloth_image_paths.append( | |
os.path.join( | |
data_root, "Images", cloth_image, cloth_image + "-0.jpg" | |
) | |
) | |
person_image_paths.append( | |
os.path.join( | |
data_root, "Images", person_image, person_image + "-1.jpg" | |
) | |
) | |
elif dataset_name == "dresscode": | |
data_root = os.path.join(dataset_root, "DressCode-1024") | |
if is_pair: | |
part = ["lower", "lower", "upper", "upper", "dresses", "dresses"] | |
ids = ["013581", "051685", "000190", "050072", "020829", "053742"] | |
cloth_image_paths = [ | |
os.path.join(data_root, "Images", part[i], ids[i], ids[i] + "_1.jpg") | |
for i in range(len(part)) | |
] | |
person_image_paths = [ | |
os.path.join(data_root, "Images", part[i], ids[i], ids[i] + "_0.jpg") | |
for i in range(len(part)) | |
] | |
else: | |
raise ValueError("DressCode dataset does not support non-pair evaluation.") | |
elif dataset_name == "farfetch": | |
data_root = os.path.join(dataset_root, "FARFETCH-1024") | |
cloth_image_paths = [ | |
# TryOn | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Blouses/13732751/13732751-2.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Hoodies/14661627/14661627-4.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Vests & Tank Tops/16532697/16532697-4.jpg", | |
"Images/men/Pants/Loose Fit Pants/14750720/14750720-6.jpg", | |
# Garment Transfer | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Shirts/10889688/10889688-3.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Shorts/Leather & Faux Leather Shorts/20143338/20143338-1.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Jackets/Blazers/15541224/15541224-2.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/men/Polo Shirts/Polo Shirts/17652415/17652415-0.jpg" | |
# "Images/men/Jackets/Hooded Jackets/12550261/12550261-1.jpg", | |
# "Images/men/Shirts/Shirts/15614589/15614589-4.jpg", | |
# "Images/women/Dresses/Day Dresses/10372515/10372515-3.jpg", | |
# "Images/women/Dresses/Sundresses/18520992/18520992-4.jpg", | |
# "Images/women/Skirts/Asymmetric & Draped Skirts/12404908/12404908-2.jpg", | |
] | |
person_image_paths = [ | |
# TryOn | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Blouses/13732751/13732751-0.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Hoodies/14661627/14661627-2.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Vests & Tank Tops/16532697/16532697-1.jpg", | |
"Images/men/Pants/Loose Fit Pants/14750720/14750720-5.jpg", | |
# Garment Transfer | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Tops/Shirts/10889688/10889688-1.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Shorts/Leather & Faux Leather Shorts/20143338/20143338-2.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/women/Jackets/Blazers/15541224/15541224-0.jpg", | |
"/home/chongzheng/Projects/hivton/Datasets/FARFETCH-1024/Images/men/Polo Shirts/Polo Shirts/17652415/17652415-4.jpg", | |
# "Images/men/Jackets/Hooded Jackets/12550261/12550261-3.jpg", | |
# "Images/men/Shirts/Shirts/15614589/15614589-3.jpg", | |
# "Images/women/Dresses/Day Dresses/10372515/10372515-0.jpg", | |
# "Images/women/Dresses/Sundresses/18520992/18520992-1.jpg", | |
# "Images/women/Skirts/Asymmetric & Draped Skirts/12404908/12404908-1.jpg", | |
] | |
cloth_image_paths = [ | |
os.path.join(data_root, path) for path in cloth_image_paths | |
] | |
person_image_paths = [ | |
os.path.join(data_root, path) for path in person_image_paths | |
] | |
else: | |
raise ValueError(f"Unknown dataset name: {dataset_name}") | |
samples = [ | |
{ | |
"folder": os.path.basename(os.path.dirname(cloth_image)), | |
"cloth": cloth_image, | |
"person": person_image, | |
} | |
for cloth_image, person_image in zip( | |
cloth_image_paths, person_image_paths | |
) | |
] | |
return samples | |
def repaint_result(result, person_image, mask_image): | |
result, person, mask = np.array(result), np.array(person_image), np.array(mask_image) | |
# expand the mask to 3 channels & to 0~1 | |
mask = np.expand_dims(mask, axis=2) | |
mask = mask / 255.0 | |
# mask for result, ~mask for person | |
result_ = result * mask + person * (1 - mask) | |
return Image.fromarray(result_.astype(np.uint8)) | |
# 多通道 Sobel 算子处理 (用于获取模特图像的损失注意力图) | |
def sobel(batch_image, mask=None, scale=4.0): | |
""" | |
计算输入批量图像的Sobel梯度. | |
batch_image: 输入的批量图像张量,大小为 [batch, channels, height, width] | |
""" | |
w, h = batch_image.size(3), batch_image.size(2) | |
pool_kernel = (max(w, h) // 16) * 2 + 1 | |
# 定义Sobel核 | |
kernel_x = ( | |
torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32) | |
.view(1, 1, 3, 3) | |
.to(batch_image.device) | |
.repeat(1, batch_image.size(1), 1, 1) | |
) | |
kernel_y = ( | |
torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32) | |
.view(1, 1, 3, 3) | |
.to(batch_image.device) | |
.repeat(1, batch_image.size(1), 1, 1) | |
) | |
# 初始化梯度张量 | |
grad_x = torch.zeros_like(batch_image) | |
grad_y = torch.zeros_like(batch_image) | |
# 边缘填充 | |
batch_image = F.pad(batch_image, (1, 1, 1, 1), mode="reflect") | |
# 应用Sobel算子 | |
grad_x = F.conv2d(batch_image, kernel_x, padding=0) | |
grad_y = F.conv2d(batch_image, kernel_y, padding=0) | |
# 计算梯度的幅度 | |
grad_magnitude = torch.sqrt(grad_x.pow(2) + grad_y.pow(2)) | |
# Mask 处理 | |
if mask is not None: | |
grad_magnitude = grad_magnitude * mask | |
# 剃度裁剪 | |
grad_magnitude = torch.clamp(grad_magnitude, 0.2, 2.5) | |
# 平均池化 | |
grad_magnitude = F.avg_pool2d( | |
grad_magnitude, kernel_size=pool_kernel, stride=1, padding=pool_kernel // 2 | |
) | |
# 归一化 | |
grad_magnitude = (grad_magnitude / grad_magnitude.max()) * scale | |
return grad_magnitude | |
# Sobel 加权平方误差, 增强边缘区域的损失(直接用于损失计算) | |
def sobel_aug_squared_error(x, y, reference, mask=None, reduction="mean"): | |
""" | |
计算x,y的逐元素平方误差,其中x和y是图像张量. | |
然后利用 x 的 sobel 结果作为权重,计算加权平方误差. | |
x: Tensor, shape [batch, channels, height, width] | |
y: Tensor, shape [batch, channels, height, width] | |
""" | |
ref_sobel = sobel(reference, mask=mask) # 计算 sobel 梯度作为损失权重 | |
if ref_sobel.isnan().any(): | |
print("Error: NaN Sobel Gradient") | |
loss = F.mse_loss(x, y, reduction="mean") # 如果梯度为nan,则直接退化为MSE损失 | |
else: | |
squared_error = (x - y).pow(2) | |
weighted_squared_error = squared_error * ref_sobel | |
if reduction == "mean": | |
loss = weighted_squared_error.mean() | |
elif reduction == "sum": | |
loss = weighted_squared_error.sum() | |
elif reduction == "none": | |
loss = weighted_squared_error | |
# print("WSE Loss:", loss.mean(), loss.dtype) | |
return loss | |
# 准备图像(转换为 Batch 张量) | |
def prepare_image(image): | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
image = image.unsqueeze(0) | |
image = image.to(dtype=torch.float32) | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
return image | |
def prepare_mask_image(mask_image): | |
if isinstance(mask_image, torch.Tensor): | |
if mask_image.ndim == 2: | |
# Batch and add channel dim for single mask | |
mask_image = mask_image.unsqueeze(0).unsqueeze(0) | |
elif mask_image.ndim == 3 and mask_image.shape[0] == 1: | |
# Single mask, the 0'th dimension is considered to be | |
# the existing batch size of 1 | |
mask_image = mask_image.unsqueeze(0) | |
elif mask_image.ndim == 3 and mask_image.shape[0] != 1: | |
# Batch of mask, the 0'th dimension is considered to be | |
# the batching dimension | |
mask_image = mask_image.unsqueeze(1) | |
# Binarize mask | |
mask_image[mask_image < 0.5] = 0 | |
mask_image[mask_image >= 0.5] = 1 | |
else: | |
# preprocess mask | |
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)): | |
mask_image = [mask_image] | |
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image): | |
mask_image = np.concatenate( | |
[np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0 | |
) | |
mask_image = mask_image.astype(np.float32) / 255.0 | |
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray): | |
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0) | |
mask_image[mask_image < 0.5] = 0 | |
mask_image[mask_image >= 0.5] = 1 | |
mask_image = torch.from_numpy(mask_image) | |
return mask_image | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
if images.shape[-1] == 1: | |
# special case for grayscale (single channel) images | |
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] | |
else: | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def load_eval_image_pairs(root, mode="logo"): | |
# TODO 加载测试图像对,包括配对和非配对的图像对 | |
test_name = "test" | |
person_image_paths = [ | |
os.path.join(root, test_name, "image", _) | |
for _ in os.listdir(os.path.join(root, test_name, "image")) | |
if _.endswith(".jpg") | |
] | |
cloth_image_paths = [ | |
person_image_path.replace("image", "cloth") | |
for person_image_path in person_image_paths | |
] | |
# 包含图案和文字的部分图像 | |
if mode == "logo": | |
filter_pairs = [ | |
6648, | |
6744, | |
6967, | |
6985, | |
14031, | |
12358, | |
4963, | |
4680, | |
499, | |
396, | |
345, | |
6648, | |
6744, | |
6967, | |
6985, | |
7510, | |
8205, | |
8254, | |
10545, | |
11485, | |
11632, | |
12354, | |
13144, | |
14112, | |
12570, | |
11766, | |
] | |
filter_pairs.sort() | |
filter_pairs = [f"{_:05d}_00.jpg" for _ in filter_pairs] | |
cloth_image_paths = [ | |
cloth_image_paths[i] | |
for i in range(len(cloth_image_paths)) | |
if os.path.basename(cloth_image_paths[i]) in filter_pairs | |
] | |
person_image_paths = [ | |
person_image_paths[i] | |
for i in range(len(person_image_paths)) | |
if os.path.basename(person_image_paths[i]) in filter_pairs | |
] | |
return cloth_image_paths, person_image_paths | |
def tensor_to_image(tensor: torch.Tensor): | |
""" | |
Converts a torch tensor to PIL Image. | |
""" | |
assert tensor.dim() == 3, "Input tensor should be 3-dimensional." | |
assert tensor.dtype == torch.float32, "Input tensor should be float32." | |
assert ( | |
tensor.min() >= 0 and tensor.max() <= 1 | |
), "Input tensor should be in range [0, 1]." | |
tensor = tensor.cpu() | |
tensor = tensor * 255 | |
tensor = tensor.permute(1, 2, 0) | |
tensor = tensor.numpy().astype(np.uint8) | |
image = Image.fromarray(tensor) | |
return image | |
def concat_images(images: List[Image.Image], divider: int = 4, cols: int = 4): | |
""" | |
Concatenates images horizontally and with | |
""" | |
widths = [image.size[0] for image in images] | |
heights = [image.size[1] for image in images] | |
total_width = cols * max(widths) | |
total_width += divider * (cols - 1) | |
# `col` images each row | |
rows = math.ceil(len(images) / cols) | |
total_height = max(heights) * rows | |
# add divider between rows | |
total_height += divider * (len(heights) // cols - 1) | |
# all black image | |
concat_image = Image.new("RGB", (total_width, total_height), (0, 0, 0)) | |
x_offset = 0 | |
y_offset = 0 | |
for i, image in enumerate(images): | |
concat_image.paste(image, (x_offset, y_offset)) | |
x_offset += image.size[0] + divider | |
if (i + 1) % cols == 0: | |
x_offset = 0 | |
y_offset += image.size[1] + divider | |
return concat_image | |
def read_prompt_file(prompt_file: str): | |
if prompt_file is not None and os.path.isfile(prompt_file): | |
with open(prompt_file, "r") as sample_prompt_file: | |
sample_prompts = sample_prompt_file.readlines() | |
sample_prompts = [sample_prompt.strip() for sample_prompt in sample_prompts] | |
else: | |
sample_prompts = [] | |
return sample_prompts | |
def save_tensors_to_npz(tensors: torch.Tensor, paths: List[str]): | |
assert len(tensors) == len(paths), "Length of tensors and paths should be the same!" | |
for tensor, path in zip(tensors, paths): | |
np.savez_compressed(path, latent=tensor.cpu().numpy()) | |
def deepspeed_zero_init_disabled_context_manager(): | |
""" | |
returns either a context list that includes one that will disable zero.Init or an empty context list | |
""" | |
deepspeed_plugin = ( | |
AcceleratorState().deepspeed_plugin | |
if accelerate.state.is_initialized() | |
else None | |
) | |
if deepspeed_plugin is None: | |
return [] | |
return [deepspeed_plugin.zero3_init_context_manager(enable=False)] | |
def is_xformers_available(): | |
try: | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
print( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, " | |
"please update xFormers to at least 0.0.17. " | |
"See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
return True | |
except ImportError: | |
raise ValueError( | |
"xformers is not available. Make sure it is installed correctly" | |
) | |
def resize_and_crop(image, size): | |
# Crop to size ratio | |
w, h = image.size | |
target_w, target_h = size | |
if w / h < target_w / target_h: | |
new_w = w | |
new_h = w * target_h // target_w | |
else: | |
new_h = h | |
new_w = h * target_w // target_h | |
image = image.crop( | |
((w - new_w) // 2, (h - new_h) // 2, (w + new_w) // 2, (h + new_h) // 2) | |
) | |
# resize | |
image = image.resize(size, Image.LANCZOS) | |
return image | |
def resize_and_padding(image, size): | |
# Padding to size ratio | |
w, h = image.size | |
target_w, target_h = size | |
if w / h < target_w / target_h: | |
new_h = target_h | |
new_w = w * target_h // h | |
else: | |
new_w = target_w | |
new_h = h * target_w // w | |
image = image.resize((new_w, new_h), Image.LANCZOS) | |
# padding | |
padding = Image.new("RGB", size, (255, 255, 255)) | |
padding.paste(image, ((target_w - new_w) // 2, (target_h - new_h) // 2)) | |
return padding | |
if __name__ == "__main__": | |
pass | |