import argparse import os os.environ['CUDA_HOME'] = '/usr/local/cuda' os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin' from datetime import datetime import gradio as gr import spaces import numpy as np import torch from diffusers.image_processor import VaeImageProcessor from huggingface_hub import snapshot_download from PIL import Image torch.jit.script = lambda f: f from model.cloth_masker import AutoMasker, vis_mask from model.pipeline import CatVTONPipeline from utils import init_weight_dtype, resize_and_crop, resize_and_padding from test import morph_close, morph_open, extend_mask_downward, image_equal import cv2 # GPU에서 현재 할당된 메모리 확인 (GPU 0번 기준) #allocated_memory = torch.cuda.memory_allocated(0) # 0번 GPU에서 할당된 메모리 양을 반환 #print(f"GPU 0에서 할당된 메모리: {allocated_memory / (1024 ** 2)} MB") # MB로 변환하여 출력 # to chck def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--base_model_path", type=str, # default="Kwai-Kolors/Kolors-Inpainting", default="booksforcharlie/stable-diffusion-inpainting", # default="stabilityai/stable-diffusion-2-inpainting", # default="runwayml/stable-diffusion-inpainting", help=( "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." ), ) parser.add_argument( "--resume_path", type=str, default="zhengchong/CatVTON", help=( "The Path to the checkpoint of trained tryon model." ), ) parser.add_argument( "--output_dir", type=str, default="resource/demo/output", help="The output directory where the model predictions will be written.", ) parser.add_argument( "--width", type=int, default=768, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--height", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--repaint", action="store_true", help="Whether to repaint the result image with the original background." ) parser.add_argument( "--allow_tf32", action="store_true", default=True, help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid args = parse_args() repo_path = snapshot_download(repo_id=args.resume_path) # Pipeline pipeline = CatVTONPipeline( base_ckpt=args.base_model_path, attn_ckpt=repo_path, attn_ckpt_version="mix", weight_dtype=init_weight_dtype(args.mixed_precision), use_tf32=args.allow_tf32, device='cuda' ) # AutoMasker mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) automasker = AutoMasker( densepose_ckpt=os.path.join(repo_path, "DensePose"), schp_ckpt=os.path.join(repo_path, "SCHP"), device='cuda', ) @spaces.GPU(duration=120) # 매개변수로 fitting_type 추가해야 함. cloth_type 밑에. def submit_function( person_image, cloth_image, cloth_type, fitting_type, num_inference_steps, guidance_scale, seed, show_type ): person_image, mask = person_image["background"], person_image["layers"][0] # person_image["layers"][0]이 유저가 그린 마스크 레이어임. mask = Image.open(mask).convert("L") if len(np.unique(np.array(mask))) == 1: mask = None # 사용자가 마스크를 그리지 않은 경우. else: mask = np.array(mask) mask[mask > 0] = 255 # 배경이 검은색. mask = Image.fromarray(mask) tmp_folder = args.output_dir date_str = datetime.now().strftime("%Y%m%d%H%M%S") result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png") if not os.path.exists(os.path.join(tmp_folder, date_str[:8])): os.makedirs(os.path.join(tmp_folder, date_str[:8])) generator = None if seed != -1: generator = torch.Generator(device='cuda').manual_seed(seed) person_image = Image.open(person_image).convert("RGB") cloth_image = Image.open(cloth_image).convert("RGB") person_image = resize_and_crop(person_image, (args.width, args.height)) cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) #예외처리 #man compare_image_mlvl0 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB") compare_image_mlvl0 = resize_and_crop(compare_image_mlvl0, (args.width, args.height)) compare_image_mlvl1 = Image.open("./resource/demo/example/person/men/m_lvl1.png").convert("RGB") compare_image_mlvl1 = resize_and_crop(compare_image_mlvl1, (args.width, args.height)) compare_image_mlvl2 = Image.open("./resource/demo/example/person/men/m_lvl2.png").convert("RGB") compare_image_mlvl2 = resize_and_crop(compare_image_mlvl2, (args.width, args.height)) compare_image_mlvl3 = Image.open("./resource/demo/example/person/men/m_lvl3.png").convert("RGB") compare_image_mlvl3 = resize_and_crop(compare_image_mlvl3, (args.width, args.height)) #womam compare_image_wlvl0 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB") compare_image_wlvl0 = resize_and_crop(compare_image_wlvl0, (args.width, args.height)) compare_image_wlvl1 = Image.open("./resource/demo/example/person/women/w_lvl1.png").convert("RGB") compare_image_wlvl1 = resize_and_crop(compare_image_wlvl1, (args.width, args.height)) compare_image_wlvl2 = Image.open("./resource/demo/example/person/women/w_lvl2.png").convert("RGB") compare_image_wlvl2 = resize_and_crop(compare_image_wlvl2, (args.width, args.height)) compare_image_wlvl3 = Image.open("./resource/demo/example/person/women/w_lvl3.png").convert("RGB") compare_image_wlvl3 = resize_and_crop(compare_image_wlvl3, (args.width, args.height)) # Process mask if mask is not None: mask = resize_and_crop(mask, (args.width, args.height)) else: if image_equal(person_image, compare_image_mlvl3): person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam_v2.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_wlvl3): person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] # 이후 처리 sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam_v2.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_mlvl2): person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam_v2.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_wlvl2): person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] # 이후 처리 sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam_v2.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_mlvl1): person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_wlvl1): person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] # 이후 처리 sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_mlvl0): person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) elif image_equal(person_image, compare_image_wlvl0): person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB") person_image2 = resize_and_crop(person_image2, (args.width, args.height)) mask = automasker( person_image2, cloth_type )['mask'] # 이후 처리 sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) mask_np = np.array(mask) sam_mask_upper_np = np.array(sam_mask_upper) sam_mask_lower_np = np.array(sam_mask_lower) if cloth_type == "upper": kernel = np.ones((10, 10), np.uint8) sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1) result_np = np.where(sam_mask_lower_np== 255, 0, mask_np) result_np = np.where(sam_mask_upper_np== 255, 255, result_np) mask = Image.fromarray(result_np) elif cloth_type == "lower": kernel = np.ones((10, 10), np.uint8) sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1) result_np = np.where(sam_mask_upper_np== 255, 0, mask_np) result_np = np.where(sam_mask_lower_np== 255, 255, result_np) mask = Image.fromarray(result_np) else: mask = Image.fromarray(mask_np) else: mask = automasker( person_image, cloth_type )['mask'] # mask.save("./app_mask_created.png") # 가끔 bmi지수 높은 아바타의 경우, upper mask를 정확히 생성해내지 못하는 경우가 있어 수동으로 한 번 더 처리해줌. # 튀어나온 부분 밀어버리기 (는 사용자가 그린 mask에 대해서는 시행되면 안되므로, else문 안에 넣어두기) #if cloth_type == "upper": # height = (np.array(mask)).shape[0] # y_threshold = int(height * 0.7) # 이미지 높이의 50퍼센트 이하. 50퍼센트가 딱 적당함. # 밑부분 제거 # mask = remove_bottom_part(np.array(mask), y_threshold) # 위 방법으로 해결 불가임. 튀어나온 부분 # input 된 target 이미지마다, 생성되는 mask 영역의 크기가 다르기 때문. mask 파일 자체의 크기는 같을 지언정. # 추가로 Fitting Type에 따라 마스크 처리 (else문 내부) if fitting_type == "standard": # mlvl3에 대한 upper lower 각각. if image_equal(person_image, compare_image_mlvl3) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl3) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # mlvl2에 대한 upper lower 각각. elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # mlvl1에 대한 upper lower 각각. elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # mlvl0에 대한 upper lower 각각. elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl3에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl2에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl1에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl0에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # 그 외 디폴트 else: opened_mask = morph_open(mask) extended_mask = extend_mask_downward(np.array(mask), pixels=100) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif fitting_type == "loose" : # mlvl3에 대한 upper lower 각각. if image_equal(person_image, compare_image_mlvl3) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl3) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # mlvl2에 대한 upper lower 각각. elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # mlvl1에 대한 upper lower 각각. elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # mlvl0에 대한 upper lower 각각. elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl3에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl2에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl1에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # wlvl0에 대한 upper lower 각각. elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "upper": opened_mask = morph_open(mask) sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L") sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height)) sam_mask_upper_np = np.array(sam_mask_upper) extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "lower": opened_mask = morph_open(mask) sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L") sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height)) sam_mask_lower_np = np.array(sam_mask_lower) extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # 그 외 디폴트 else: opened_mask = morph_open(mask) extended_mask = extend_mask_downward(np.array(mask), pixels=200) #최종 마스크 처리 (test.py 설명 참고) final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask)) final_mask = morph_close(morph_open(final_mask)) mask = final_mask # 블러처리 mask = mask_processor.blur(mask, blur_factor=9) # Inference # try: result_image = pipeline( image=person_image, condition_image=cloth_image, mask=mask, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator )[0] # except Exception as e: # raise gr.Error( # "An error occurred. Please try again later: {}".format(e) # ) # Post-process masked_person = vis_mask(person_image, mask) save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4) save_result_image.save(result_save_path) if show_type == "result only": return result_image else: width, height = person_image.size if show_type == "input & result": condition_width = width // 2 conditions = image_grid([person_image, cloth_image], 2, 1) else: condition_width = width // 3 conditions = image_grid([person_image, masked_person , cloth_image], 3, 1) conditions = conditions.resize((condition_width, height), Image.NEAREST) new_result_image = Image.new("RGB", (width + condition_width + 5, height)) new_result_image.paste(conditions, (0, 0)) new_result_image.paste(result_image, (condition_width + 5, 0)) return new_result_image def person_example_fn(image_path): return image_path HEADER = """ """ def app_gradio(): with gr.Blocks(title="CatVTON") as demo: gr.Markdown(HEADER) with gr.Row(): with gr.Column(scale=1, min_width=350): with gr.Row(): image_path = gr.Image( type="filepath", interactive=True, visible=False, ) person_image = gr.ImageEditor( interactive=True, label="Person Image", type="filepath" ) with gr.Row(): with gr.Column(scale=1, min_width=230): cloth_image = gr.Image( interactive=True, label="Condition Image", type="filepath" ) with gr.Column(scale=1, min_width=120): gr.Markdown( 'Two ways to provide Mask:
1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)
2. Select the `Try-On Cloth Type` to generate automatically
' ) cloth_type = gr.Radio( label="Try-On Cloth Type", choices=["upper", "lower", "overall"], value="upper", ) with gr.Column(scale=1, min_width=120): gr.Markdown( 'Two ways to provide Mask:
1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)
2. Select the `Fitting Type` to generate automatically
' ) fitting_type = gr.Radio( label="Try-On Fitting Type", choices=["fit", "standard", "loose"], value="fit", # default ) submit = gr.Button("Submit") gr.Markdown( '
!!! Click only Once, Wait for Delay !!!
' ) gr.Markdown( 'Advanced options can adjust details:
1. `Inference Step` may enhance details;
2. `CFG` is highly correlated with saturation;
3. `Random seed` may improve pseudo-shadow.
' ) with gr.Accordion("Advanced Options", open=False): num_inference_steps = gr.Slider( label="Inference Step", minimum=10, maximum=100, step=5, value=50 ) # Guidence Scale guidance_scale = gr.Slider( label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5 ) # Random Seed seed = gr.Slider( label="Seed", minimum=-1, maximum=10000, step=1, value=42 ) show_type = gr.Radio( label="Show Type", choices=["result only", "input & result", "input & mask & result"], value="input & mask & result", ) with gr.Column(scale=2, min_width=500): result_image = gr.Image(interactive=False, label="Result") with gr.Row(): # Photo Examples root_path = "resource/demo/example" with gr.Column(): men_exm = gr.Examples( examples=[ os.path.join(root_path, "person", "men", _) for _ in os.listdir(os.path.join(root_path, "person", "men")) ], examples_per_page=4, inputs=image_path, label="Person Examples ①", ) women_exm = gr.Examples( examples=[ os.path.join(root_path, "person", "women", _) for _ in os.listdir(os.path.join(root_path, "person", "women")) ], examples_per_page=4, inputs=image_path, label="Person Examples ②", ) gr.Markdown( '*Person examples come from the demos of OOTDiffusion and OutfitAnyone. ' ) with gr.Column(): condition_upper_exm = gr.Examples( examples=[ os.path.join(root_path, "condition", "upper", _) for _ in os.listdir(os.path.join(root_path, "condition", "upper")) ], examples_per_page=4, inputs=cloth_image, label="Condition Upper Examples", ) condition_overall_exm = gr.Examples( examples=[ os.path.join(root_path, "condition", "overall", _) for _ in os.listdir(os.path.join(root_path, "condition", "overall")) ], examples_per_page=4, inputs=cloth_image, label="Condition Overall Examples", ) condition_person_exm = gr.Examples( examples=[ os.path.join(root_path, "condition", "person", _) for _ in os.listdir(os.path.join(root_path, "condition", "person")) ], examples_per_page=4, inputs=cloth_image, label="Condition Reference Person Examples", ) condition_person_exm = gr.Examples( examples=[ os.path.join(root_path, "condition", "lower", _) for _ in os.listdir(os.path.join(root_path, "condition", "lower")) ], examples_per_page=4, inputs=cloth_image, label="Condition Reference lower Examples", ) gr.Markdown( '*Condition examples come from the Internet. ' ) image_path.change( person_example_fn, inputs=image_path, outputs=person_image ) #여기도 매개변수 fitting_type 추가해야 함. submit.click( submit_function, [ person_image, cloth_image, cloth_type, fitting_type, num_inference_steps, guidance_scale, seed, show_type, ], result_image, ) demo.queue().launch(share=True, show_error=True) if __name__ == "__main__": app_gradio()