import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
from test import morph_close, morph_open, extend_mask_downward, image_equal
import cv2
# GPU에서 현재 할당된 메모리 확인 (GPU 0번 기준)
#allocated_memory = torch.cuda.memory_allocated(0) # 0번 GPU에서 할당된 메모리 양을 반환
#print(f"GPU 0에서 할당된 메모리: {allocated_memory / (1024 ** 2)} MB") # MB로 변환하여 출력
# to chck
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
# default="Kwai-Kolors/Kolors-Inpainting",
default="booksforcharlie/stable-diffusion-inpainting",
# default="stabilityai/stable-diffusion-2-inpainting",
# default="runwayml/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
@spaces.GPU(duration=120)
# 매개변수로 fitting_type 추가해야 함. cloth_type 밑에.
def submit_function(
person_image,
cloth_image,
cloth_type,
fitting_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
person_image, mask = person_image["background"], person_image["layers"][0] # person_image["layers"][0]이 유저가 그린 마스크 레이어임.
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1:
mask = None # 사용자가 마스크를 그리지 않은 경우.
else:
mask = np.array(mask)
mask[mask > 0] = 255 # 배경이 검은색.
mask = Image.fromarray(mask)
tmp_folder = args.output_dir
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
#예외처리
#man
compare_image_mlvl0 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
compare_image_mlvl0 = resize_and_crop(compare_image_mlvl0, (args.width, args.height))
compare_image_mlvl1 = Image.open("./resource/demo/example/person/men/m_lvl1.png").convert("RGB")
compare_image_mlvl1 = resize_and_crop(compare_image_mlvl1, (args.width, args.height))
compare_image_mlvl2 = Image.open("./resource/demo/example/person/men/m_lvl2.png").convert("RGB")
compare_image_mlvl2 = resize_and_crop(compare_image_mlvl2, (args.width, args.height))
compare_image_mlvl3 = Image.open("./resource/demo/example/person/men/m_lvl3.png").convert("RGB")
compare_image_mlvl3 = resize_and_crop(compare_image_mlvl3, (args.width, args.height))
#womam
compare_image_wlvl0 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
compare_image_wlvl0 = resize_and_crop(compare_image_wlvl0, (args.width, args.height))
compare_image_wlvl1 = Image.open("./resource/demo/example/person/women/w_lvl1.png").convert("RGB")
compare_image_wlvl1 = resize_and_crop(compare_image_wlvl1, (args.width, args.height))
compare_image_wlvl2 = Image.open("./resource/demo/example/person/women/w_lvl2.png").convert("RGB")
compare_image_wlvl2 = resize_and_crop(compare_image_wlvl2, (args.width, args.height))
compare_image_wlvl3 = Image.open("./resource/demo/example/person/women/w_lvl3.png").convert("RGB")
compare_image_wlvl3 = resize_and_crop(compare_image_wlvl3, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
if image_equal(person_image, compare_image_mlvl3):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl3):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
# 이후 처리
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_mlvl2):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl2):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
# 이후 처리
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam_v2.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_mlvl1):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl1):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
# 이후 처리
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_mlvl0):
person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
elif image_equal(person_image, compare_image_wlvl0):
person_image2 = Image.open("./resource/demo/example/person/women/w_lvl0.png").convert("RGB")
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
person_image2,
cloth_type
)['mask']
# 이후 처리
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
mask_np = np.array(mask)
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)
if cloth_type == "upper":
kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
elif cloth_type == "lower":
kernel = np.ones((10, 10), np.uint8)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)
result_np = np.where(sam_mask_upper_np== 255, 0, mask_np)
result_np = np.where(sam_mask_lower_np== 255, 255, result_np)
mask = Image.fromarray(result_np)
else:
mask = Image.fromarray(mask_np)
else:
mask = automasker(
person_image,
cloth_type
)['mask']
# mask.save("./app_mask_created.png")
# 가끔 bmi지수 높은 아바타의 경우, upper mask를 정확히 생성해내지 못하는 경우가 있어 수동으로 한 번 더 처리해줌.
# 튀어나온 부분 밀어버리기 (는 사용자가 그린 mask에 대해서는 시행되면 안되므로, else문 안에 넣어두기)
#if cloth_type == "upper":
# height = (np.array(mask)).shape[0]
# y_threshold = int(height * 0.7) # 이미지 높이의 50퍼센트 이하. 50퍼센트가 딱 적당함.
# 밑부분 제거
# mask = remove_bottom_part(np.array(mask), y_threshold)
# 위 방법으로 해결 불가임. 튀어나온 부분
# input 된 target 이미지마다, 생성되는 mask 영역의 크기가 다르기 때문. mask 파일 자체의 크기는 같을 지언정.
# 추가로 Fitting Type에 따라 마스크 처리 (else문 내부)
if fitting_type == "standard":
# mlvl3에 대한 upper lower 각각.
if image_equal(person_image, compare_image_mlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl2에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl1에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl0에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl3에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl2에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl1에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl0에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# 그 외 디폴트
else:
opened_mask = morph_open(mask)
extended_mask = extend_mask_downward(np.array(mask), pixels=100)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif fitting_type == "loose" :
# mlvl3에 대한 upper lower 각각.
if image_equal(person_image, compare_image_mlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl2에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl1에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# mlvl0에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_mlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl3에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl3) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl2에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl2_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl2) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl2_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl1에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl1_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl1) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl1_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# wlvl0에 대한 upper lower 각각.
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "upper":
opened_mask = morph_open(mask)
sam_mask_upper = Image.open("./resource/demo/example/person/sam/w_lvl0_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))
sam_mask_upper_np = np.array(sam_mask_upper)
extended_mask = extend_mask_downward(sam_mask_upper_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
elif image_equal(person_image, compare_image_wlvl0) and cloth_type == "lower":
opened_mask = morph_open(mask)
sam_mask_lower = Image.open("./resource/demo/example/person/sam/w_lvl0_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_lower_np = np.array(sam_mask_lower)
extended_mask = extend_mask_downward(sam_mask_lower_np, pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# 그 외 디폴트
else:
opened_mask = morph_open(mask)
extended_mask = extend_mask_downward(np.array(mask), pixels=200)
#최종 마스크 처리 (test.py 설명 참고)
final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
final_mask = morph_close(morph_open(final_mask))
mask = final_mask
# 블러처리
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
# try:
result_image = pipeline(
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)[0]
# except Exception as e:
# raise gr.Error(
# "An error occurred. Please try again later: {}".format(e)
# )
# Post-process
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
HEADER = """
"""
def app_gradio():
with gr.Blocks(title="CatVTON") as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Row():
image_path = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image = gr.ImageEditor(
interactive=True, label="Person Image", type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image = gr.Image(
interactive=True, label="Condition Image", type="filepath"
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'Two ways to provide Mask:
1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)
2. Select the `Try-On Cloth Type` to generate automatically '
)
cloth_type = gr.Radio(
label="Try-On Cloth Type",
choices=["upper", "lower", "overall"],
value="upper",
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'Two ways to provide Mask:
1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)
2. Select the `Fitting Type` to generate automatically '
)
fitting_type = gr.Radio(
label="Try-On Fitting Type",
choices=["fit", "standard", "loose"],
value="fit", # default
)
submit = gr.Button("Submit")
gr.Markdown(
'