File size: 8,844 Bytes
bfc0ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""A script to load a dataset or set of datasets from a config for a Lilac instance.

Usage:

poetry run python -m lilac.load \
  --output_dir=demo_data \
  --config_path=lilac_hf_space.yml
"""

import gc
import os
import shutil

import click
import dask
import psutil
from distributed import Client

from .concepts.db_concept import DiskConceptDB, DiskConceptModelDB
from .config import EmbeddingConfig, SignalConfig, read_config
from .data.dataset_duckdb import DatasetDuckDB
from .data_loader import process_source
from .db_manager import get_dataset, list_datasets, remove_dataset_from_cache
from .schema import ROWID, PathTuple
from .tasks import TaskManager, TaskStepId
from .utils import DebugTimer, get_datasets_dir


@click.command()
@click.option(
  '--output_dir', required=True, type=str, help='The output directory to write files to.')
@click.option(
  '--config_path',
  required=True,
  type=str,
  help='The path to a json or yml file describing the configuration. '
  'The file contents should be an instance of `lilac.Config` or `lilac.DatasetConfig`.')
@click.option(
  '--overwrite',
  help='When True, runs all all data from scratch, overwriting existing data. When false, only'
  'load new datasets, embeddings, and signals.',
  type=bool,
  is_flag=True,
  default=False)
def load_command(output_dir: str, config_path: str, overwrite: bool) -> None:
  """Run the source loader as a binary."""
  load(output_dir, config_path, overwrite)


def load(output_dir: str, config_path: str, overwrite: bool) -> None:
  """Run the source loader as a binary."""
  old_data_path = os.environ.get('LILAC_DATA_PATH')
  os.environ['LILAC_DATA_PATH'] = output_dir
  # Turn off debug logging.
  del os.environ['DEBUG']
  # Use views to avoid loading duckdb tables into RAM since we aren't query heavy.
  os.environ['DUCKDB_USE_VIEWS'] = '1'

  config = read_config(config_path)

  # Explicitly create a dask client in sync mode.
  dask.config.set({'distributed.worker.daemon': False})
  total_memory_gb = psutil.virtual_memory().total / (1024**3) * 2 / 3
  task_manager = TaskManager(Client(memory_limit=f'{total_memory_gb} GB'))

  if overwrite:
    shutil.rmtree(get_datasets_dir(output_dir), ignore_errors=True)

  existing_datasets = [f'{d.namespace}/{d.dataset_name}' for d in list_datasets(output_dir)]

  print()
  print('*** Load datasets ***')
  if overwrite:
    datasets_to_load = config.datasets
  else:
    datasets_to_load = [
      d for d in config.datasets if f'{d.namespace}/{d.name}' not in existing_datasets
    ]
    skipped_datasets = [
      d for d in config.datasets if f'{d.namespace}/{d.name}' in existing_datasets
    ]
    print('Skipping loaded datasets:', ', '.join([d.name for d in skipped_datasets]))

  with DebugTimer(f'Loading datasets: {", ".join([d.name for d in datasets_to_load])}'):
    for d in datasets_to_load:
      shutil.rmtree(os.path.join(output_dir, d.name), ignore_errors=True)
      task_id = task_manager.task_id(f'Load dataset {d.namespace}/{d.name}')
      task_manager.execute(task_id, process_source, output_dir, d, (task_id, 0))
    task_manager.wait()

  print()
  total_num_rows = 0
  for d in datasets_to_load:
    dataset = DatasetDuckDB(d.namespace, d.name)
    num_rows = dataset.select_rows([ROWID], limit=1).total_num_rows
    print(f'{d.namespace}/{d.name} loaded with {num_rows:,} rows.')

    # Free up RAM.
    del dataset

    total_num_rows += num_rows

  print(f'Done loading {len(datasets_to_load)} datasets with {total_num_rows:,} rows.')

  print('*** Dataset settings ***')
  for d in config.datasets:
    if d.settings:
      dataset = DatasetDuckDB(d.namespace, d.name)
      dataset.update_settings(d.settings)

  print()
  print('*** Compute embeddings ***')
  with DebugTimer('Loading embeddings'):
    for d in config.datasets:
      dataset = DatasetDuckDB(d.namespace, d.name)

      # If embeddings are explicitly set, use only those.
      embeddings = d.embeddings or []
      # If embeddings are not explicitly set, use the media paths and preferred embedding from
      # settings.
      if not embeddings:
        if d.settings and d.settings.ui:
          for path in d.settings.ui.media_paths or []:
            if d.settings.preferred_embedding:
              embeddings.append(
                EmbeddingConfig(path=path, embedding=d.settings.preferred_embedding))
      for e in embeddings:
        if e not in dataset.config().embeddings:
          print('scheduling', e)
          task_id = task_manager.task_id(f'Compute embedding {e.embedding} on {d.name}:{e.path}')
          task_manager.execute(task_id, _compute_embedding, d.namespace, d.name, e, output_dir,
                               overwrite, (task_id, 0))
        else:
          print(f'Embedding {e.embedding} already exists for {d.name}:{e.path}. Skipping.')

      del dataset

      # Wait for all embeddings for each dataset to reduce the memory pressure.
      task_manager.wait()

  print()
  print('*** Compute signals ***')
  with DebugTimer('Computing signals'):
    for d in config.datasets:
      dataset = DatasetDuckDB(d.namespace, d.name)

      # If signals are explicitly set, use only those.
      signals = d.signals or []
      # If signals are not explicitly set, use the media paths and config.signals.
      if not signals:
        if d.settings and d.settings.ui:
          for path in d.settings.ui.media_paths or []:
            for signal in config.signals or []:
              signals.append(SignalConfig(path=path, signal=signal))

      # Separate signals by path to avoid computing the same signal in parallel, which can cause
      # issues with taking too much RAM.
      path_signals: dict[PathTuple, list[SignalConfig]] = {}
      for s in signals:
        path_signals.setdefault(s.path, []).append(s)

      for path, signals in path_signals.items():
        for s in signals:
          if s not in dataset.config().signals:
            task_id = task_manager.task_id(f'Compute signal {s.signal} on {d.name}:{s.path}')
            task_manager.execute(task_id, _compute_signal, d.namespace, d.name, s, output_dir,
                                 overwrite, (task_id, 0))
          else:
            print(f'Signal {s.signal} already exists for {d.name}:{s.path}. Skipping.')

        # Wait for all signals for each path to reduce the memory pressure.
        task_manager.wait()

      del dataset

  print()
  print('*** Compute model caches ***')
  with DebugTimer('Computing model caches'):
    concept_db = DiskConceptDB(output_dir)
    concept_model_db = DiskConceptModelDB(concept_db)
    if config.concept_model_cache_embeddings:
      for concept_info in concept_db.list():
        for embedding in config.concept_model_cache_embeddings:
          concept_model_db.sync(
            concept_info.namespace, concept_info.name, embedding_name=embedding, create=True)

  print()
  print('Done!')

  if old_data_path:
    os.environ['LILAC_DATA_PATH'] = old_data_path


def _compute_signal(namespace: str, name: str, signal_config: SignalConfig, output_dir: str,
                    overwrite: bool, task_step_id: TaskStepId) -> None:
  os.environ['LILAC_DATA_PATH'] = output_dir
  os.environ['DUCKDB_USE_VIEWS'] = '1'

  # Turn off debug logging.
  if 'DEBUG' in os.environ:
    del os.environ['DEBUG']

  compute_signal = False
  if overwrite:
    compute_signal = True

  dataset = get_dataset(namespace, name)

  if not compute_signal:
    field = dataset.manifest().data_schema.get_field(signal_config.path)
    signal_field = (field.fields or {}).get(signal_config.signal.key())
    if not signal_field or signal_field.signal != signal_config.signal.dict():
      compute_signal = True
  if compute_signal:
    dataset.compute_signal(signal_config.signal, signal_config.path, task_step_id)

  # Free up RAM.
  remove_dataset_from_cache(namespace, name)
  del dataset
  gc.collect()


def _compute_embedding(namespace: str, name: str, embedding_config: EmbeddingConfig,
                       output_dir: str, overwrite: bool, task_step_id: TaskStepId) -> None:
  os.environ['LILAC_DATA_PATH'] = output_dir
  os.environ['DUCKDB_USE_VIEWS'] = '1'

  # Turn off debug logging.
  if 'DEBUG' in os.environ:
    del os.environ['DEBUG']

  compute_embedding = False
  if overwrite:
    compute_embedding = True

  dataset = get_dataset(namespace, name)

  if not compute_embedding:
    field = dataset.manifest().data_schema.get_field(embedding_config.path)
    embedding_field = (field.fields or {}).get(embedding_config.embedding)
    if not embedding_field:
      compute_embedding = True

  if compute_embedding:
    dataset.compute_embedding(embedding_config.embedding, embedding_config.path, task_step_id)

  remove_dataset_from_cache(namespace, name)
  del dataset
  gc.collect()


if __name__ == '__main__':
  load_command()