File size: 7,642 Bytes
bfc0ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""Router for the concept database."""

from typing import Annotated, Iterable, Optional, cast

from fastapi import APIRouter, HTTPException
from fastapi.params import Depends
from openai_function_call import OpenAISchema
from pydantic import BaseModel, Field

from .auth import UserInfo, get_session_user
from .concepts.concept import (
  DRAFT_MAIN,
  Concept,
  ConceptMetrics,
  ConceptType,
  DraftId,
  draft_examples,
)
from .concepts.db_concept import DISK_CONCEPT_DB, DISK_CONCEPT_MODEL_DB, ConceptInfo, ConceptUpdate
from .env import env
from .router_utils import RouteErrorHandler, server_compute_concept
from .schema import RichData
from .signals.concept_scorer import ConceptSignal

router = APIRouter(route_class=RouteErrorHandler)


@router.get('/', response_model_exclude_none=True)
def get_concepts(
    user: Annotated[Optional[UserInfo], Depends(get_session_user)]) -> list[ConceptInfo]:
  """List the concepts."""
  return DISK_CONCEPT_DB.list(user)


@router.get('/{namespace}/{concept_name}', response_model_exclude_none=True)
def get_concept(namespace: str,
                concept_name: str,
                draft: Optional[DraftId] = DRAFT_MAIN,
                user: Annotated[Optional[UserInfo], Depends(get_session_user)] = None) -> Concept:
  """Get a concept from a database."""
  concept = DISK_CONCEPT_DB.get(namespace, concept_name, user)
  if not concept:
    raise HTTPException(
      status_code=404,
      detail=f'Concept "{namespace}/{concept_name}" was not found or user does not have access.')

  # Only return the examples from the draft.
  concept.data = draft_examples(concept, draft or DRAFT_MAIN)

  return concept


class CreateConceptOptions(BaseModel):
  """Options for creating a concept."""
  # Namespace of the concept.
  namespace: str
  # Name of the concept.
  name: str
  # Input type (modality) of the concept.
  type: ConceptType
  description: Optional[str] = None


@router.post('/create', response_model_exclude_none=True)
def create_concept(options: CreateConceptOptions,
                   user: Annotated[Optional[UserInfo],
                                   Depends(get_session_user)]) -> Concept:
  """Edit a concept in the database."""
  return DISK_CONCEPT_DB.create(options.namespace, options.name, options.type, options.description,
                                user)


@router.post('/{namespace}/{concept_name}', response_model_exclude_none=True)
def edit_concept(namespace: str, concept_name: str, change: ConceptUpdate,
                 user: Annotated[Optional[UserInfo], Depends(get_session_user)]) -> Concept:
  """Edit a concept in the database."""
  return DISK_CONCEPT_DB.edit(namespace, concept_name, change, user)


@router.delete('/{namespace}/{concept_name}')
def delete_concept(namespace: str, concept_name: str,
                   user: Annotated[Optional[UserInfo],
                                   Depends(get_session_user)]) -> None:
  """Deletes the concept from the database."""
  DISK_CONCEPT_DB.remove(namespace, concept_name, user)


class MergeConceptDraftOptions(BaseModel):
  """Merge a draft into main."""
  draft: DraftId


@router.post('/{namespace}/{concept_name}/merge_draft', response_model_exclude_none=True)
def merge_concept_draft(namespace: str, concept_name: str, options: MergeConceptDraftOptions,
                        user: Annotated[Optional[UserInfo],
                                        Depends(get_session_user)]) -> Concept:
  """Merge a draft in the concept into main."""
  return DISK_CONCEPT_DB.merge_draft(namespace, concept_name, options.draft, user)


class ScoreExample(BaseModel):
  """Example to score along a specific concept."""
  text: Optional[str] = None
  img: Optional[bytes] = None


class ScoreBody(BaseModel):
  """Request body for the score endpoint."""
  examples: list[ScoreExample]
  draft: str = DRAFT_MAIN


class ConceptModelInfo(BaseModel):
  """Information about a concept model."""
  namespace: str
  concept_name: str
  embedding_name: str
  version: int
  metrics: Optional[ConceptMetrics] = None


@router.get('/{namespace}/{concept_name}/model')
def get_concept_models(
    namespace: str,
    concept_name: str,
    user: Annotated[Optional[UserInfo],
                    Depends(get_session_user)] = None) -> list[ConceptModelInfo]:
  """Get a concept model from a database."""
  concept = DISK_CONCEPT_DB.get(namespace, concept_name, user)
  if not concept:
    raise HTTPException(
      status_code=404, detail=f'Concept "{namespace}/{concept_name}" was not found')
  models = DISK_CONCEPT_MODEL_DB.get_models(namespace, concept_name, user)

  for m in models:
    DISK_CONCEPT_MODEL_DB.sync(m.namespace, m.concept_name, m.embedding_name, user)

  return [
    ConceptModelInfo(
      namespace=m.namespace,
      concept_name=m.concept_name,
      embedding_name=m.embedding_name,
      version=m.version,
      metrics=m.get_metrics()) for m in models
  ]


@router.get('/{namespace}/{concept_name}/model/{embedding_name}')
def get_concept_model(
  namespace: str,
  concept_name: str,
  embedding_name: str,
  create_if_not_exists: bool = False,
  user: Annotated[Optional[UserInfo], Depends(get_session_user)] = None
) -> Optional[ConceptModelInfo]:
  """Get a concept model from a database."""
  concept = DISK_CONCEPT_DB.get(namespace, concept_name, user)
  if not concept:
    raise HTTPException(
      status_code=404, detail=f'Concept "{namespace}/{concept_name}" was not found')

  model = DISK_CONCEPT_MODEL_DB.get(namespace, concept_name, embedding_name, user)
  if not model and not create_if_not_exists:
    return None

  model = DISK_CONCEPT_MODEL_DB.sync(
    namespace, concept_name, embedding_name, user=user, create=create_if_not_exists)
  model_info = ConceptModelInfo(
    namespace=model.namespace,
    concept_name=model.concept_name,
    embedding_name=model.embedding_name,
    version=model.version,
    metrics=model.get_metrics())
  return model_info


@router.post(
  '/{namespace}/{concept_name}/model/{embedding_name}/score', response_model_exclude_none=True)
def score(namespace: str, concept_name: str, embedding_name: str, body: ScoreBody,
          user: Annotated[Optional[UserInfo], Depends(get_session_user)]) -> list[list[dict]]:
  """Score examples along the specified concept."""
  concept_scorer = ConceptSignal(
    namespace=namespace, concept_name=concept_name, embedding=embedding_name)
  concept_scorer.set_user(user)
  return cast(
    list[list[dict]],
    server_compute_concept(concept_scorer, cast(Iterable[RichData],
                                                [e.text for e in body.examples]), user))


class Examples(OpenAISchema):
  """Generated text examples."""
  examples: list[str] = Field(..., description='List of generated examples')


@router.get('/generate_examples')
def generate_examples(description: str) -> list[str]:
  """Generate positive examples for a given concept using an LLM model."""
  try:
    import openai
  except ImportError:
    raise ImportError('Could not import the "openai" python package. '
                      'Please install it with `pip install openai`.')

  openai.api_key = env('OPENAI_API_KEY')
  completion = openai.ChatCompletion.create(
    model='gpt-3.5-turbo-0613',
    functions=[Examples.openai_schema],
    messages=[
      {
        'role': 'system',
        'content': 'You must call the `Examples` function with the generated examples',
      },
      {
        'role': 'user',
        'content': f'Write 5 diverse, unnumbered, and concise examples of "{description}"',
      },
    ],
  )
  result = Examples.from_response(completion)
  return result.examples