nikhil_no_persistent / lilac /data /dataset_utils.py
nsthorat-lilac's picture
Duplicate from lilacai/nikhil_staging
bfc0ec6
"""Utilities for working with datasets."""
import gc
import json
import math
import os
import pprint
import secrets
from collections.abc import Iterable
from typing import Any, Callable, Iterator, Optional, Sequence, TypeVar, Union, cast
import numpy as np
import pyarrow as pa
from ..batch_utils import deep_flatten
from ..embeddings.vector_store import VectorDBIndex
from ..env import env
from ..parquet_writer import ParquetWriter
from ..schema import (
EMBEDDING_KEY,
PATH_WILDCARD,
ROWID,
TEXT_SPAN_END_FEATURE,
TEXT_SPAN_START_FEATURE,
VALUE_KEY,
DataType,
Field,
Item,
PathKey,
PathTuple,
Schema,
VectorKey,
field,
schema,
schema_to_arrow_schema,
)
from ..signal import Signal
from ..utils import is_primitive, log, open_file
def _replace_embeddings_with_none(input: Union[Item, Item]) -> Union[Item, Item]:
if isinstance(input, np.ndarray):
return None
if isinstance(input, dict):
return {k: _replace_embeddings_with_none(v) for k, v in input.items()}
if isinstance(input, list):
return [_replace_embeddings_with_none(v) for v in input]
return input
def replace_embeddings_with_none(input: Union[Item, Item]) -> Item:
"""Replaces all embeddings with None."""
return cast(Item, _replace_embeddings_with_none(input))
def count_primitives(input: Union[Iterable, Iterator]) -> int:
"""Iterate through each element of the input, flattening each one, computing a count.
Sum the final set of counts. This is the important iterable not to exhaust.
"""
return sum((len(list(deep_flatten(i))) for i in input))
def _wrap_value_in_dict(input: Union[object, dict], props: PathTuple) -> Union[object, dict]:
# If the signal produced no value, or nan, we should return None so the parquet value is sparse.
if isinstance(input, float) and math.isnan(input):
input = None
for prop in reversed(props):
input = {prop: input}
return input
def _wrap_in_dicts(input: Union[object, Iterable[object]],
spec: list[PathTuple]) -> Union[object, Iterable[object]]:
"""Wraps an object or iterable in a dict according to the spec."""
props = spec[0] if spec else tuple()
if len(spec) == 1:
return _wrap_value_in_dict(input, props)
if input is None or isinstance(input, float) and math.isnan(input):
# Return empty dict for missing inputs.
return {}
res = [_wrap_in_dicts(elem, spec[1:]) for elem in cast(Iterable, input)]
return _wrap_value_in_dict(res, props)
def wrap_in_dicts(input: Iterable[object], spec: list[PathTuple]) -> Iterable[object]:
"""Wraps an object or iterable in a dict according to the spec."""
return [_wrap_in_dicts(elem, spec) for elem in input]
def _merge_field_into(schema: Field, destination: Field) -> None:
if isinstance(schema, Field):
destination.signal = destination.signal or schema.signal
destination.dtype = destination.dtype or schema.dtype
if schema.fields:
destination.fields = destination.fields or {}
for field_name, subfield in schema.fields.items():
if field_name not in destination.fields:
destination.fields[field_name] = subfield.copy(deep=True)
else:
_merge_field_into(subfield, destination.fields[field_name])
elif schema.repeated_field:
if not destination.repeated_field:
raise ValueError('Failed to merge schemas. Origin schema is repeated, but destination is not')
_merge_field_into(schema.repeated_field, destination.repeated_field)
else:
if destination.dtype != schema.dtype:
raise ValueError(f'Failed to merge schemas. Origin schema has dtype {schema.dtype}, '
f'but destination has dtype {destination.dtype}')
def merge_schemas(schemas: Sequence[Union[Schema, Field]]) -> Schema:
"""Merge a list of schemas."""
merged_schema = Schema(fields={})
for s in schemas:
_merge_field_into(cast(Field, s), cast(Field, merged_schema))
return merged_schema
def schema_contains_path(schema: Schema, path: PathTuple) -> bool:
"""Check if a schema contains a path."""
current_field = cast(Field, schema)
for path_part in path:
if path_part == PATH_WILDCARD:
if current_field.repeated_field is None:
return False
current_field = current_field.repeated_field
else:
if current_field.fields is None or path_part not in current_field.fields:
return False
current_field = current_field.fields[str(path_part)]
return True
def create_signal_schema(signal: Signal, source_path: PathTuple, current_schema: Schema) -> Schema:
"""Create a schema describing the enriched fields added an enrichment."""
leafs = current_schema.leafs
# Validate that the enrich fields are actually a valid leaf path.
if source_path not in leafs:
raise ValueError(f'"{source_path}" is not a valid leaf path. Leaf paths: {leafs.keys()}')
signal_schema = signal.fields()
signal_schema.signal = signal.dict()
enriched_schema = field(fields={signal.key(is_computed_signal=True): signal_schema})
for path_part in reversed(source_path):
if path_part == PATH_WILDCARD:
enriched_schema = Field(repeated_field=enriched_schema)
else:
enriched_schema = Field(fields={path_part: enriched_schema})
if not enriched_schema.fields:
raise ValueError('This should not happen since enriched_schema always has fields (see above)')
return schema(enriched_schema.fields.copy())
def write_embeddings_to_disk(vector_store: str, rowids: Iterable[str], signal_items: Iterable[Item],
output_dir: str) -> None:
"""Write a set of embeddings to disk."""
def embedding_predicate(input: Any) -> bool:
return (isinstance(input, list) and len(input) > 0 and isinstance(input[0], dict) and
EMBEDDING_KEY in input[0])
path_keys = flatten_keys(rowids, signal_items, is_primitive_predicate=embedding_predicate)
all_embeddings = cast(Iterable[Item],
deep_flatten(signal_items, is_primitive_predicate=embedding_predicate))
embedding_vectors: list[np.ndarray] = []
all_spans: list[tuple[PathKey, list[tuple[int, int]]]] = []
for path_key, embeddings in zip(path_keys, all_embeddings):
if not path_key or not embeddings:
# Sparse embeddings may not have an embedding for every key.
continue
spans: list[tuple[int, int]] = []
for e in embeddings:
span = e[VALUE_KEY]
vector = e[EMBEDDING_KEY]
# We squeeze here because embedding functions can return outer dimensions of 1.
embedding_vectors.append(vector.reshape(-1))
spans.append((span[TEXT_SPAN_START_FEATURE], span[TEXT_SPAN_END_FEATURE]))
all_spans.append((path_key, spans))
embedding_matrix = np.array(embedding_vectors, dtype=np.float32)
del path_keys, all_embeddings, embedding_vectors
gc.collect()
# Write to disk.
vector_index = VectorDBIndex(vector_store)
vector_index.add(all_spans, embedding_matrix)
vector_index.save(output_dir)
del vector_index
gc.collect()
def write_items_to_parquet(items: Iterable[Item], output_dir: str, schema: Schema,
filename_prefix: str, shard_index: int,
num_shards: int) -> tuple[str, int]:
"""Write a set of items to a parquet file, in columnar format."""
schema = schema.copy(deep=True)
# Add a rowid column.
schema.fields[ROWID] = Field(dtype=DataType.STRING)
arrow_schema = schema_to_arrow_schema(schema)
out_filename = parquet_filename(filename_prefix, shard_index, num_shards)
filepath = os.path.join(output_dir, out_filename)
f = open_file(filepath, mode='wb')
writer = ParquetWriter(schema)
writer.open(f)
debug = env('DEBUG', False)
num_items = 0
for item in items:
# Add a rowid column.
if ROWID not in item:
item[ROWID] = secrets.token_urlsafe(nbytes=12) # 16 base64 characters.
if debug:
try:
_validate(item, arrow_schema)
except Exception as e:
raise ValueError(f'Error validating item: {json.dumps(item)}') from e
writer.write(item)
num_items += 1
writer.close()
f.close()
return out_filename, num_items
def _validate(item: Item, schema: pa.Schema) -> None:
# Try to parse the item using the inferred schema.
try:
pa.RecordBatch.from_pylist([item], schema=schema)
except pa.ArrowTypeError:
log('Failed to parse arrow item using the arrow schema.')
log('Item:')
log(pprint.pformat(item, indent=2))
log('Arrow schema:')
log(schema)
raise # Re-raise the same exception, same stacktrace.
def parquet_filename(prefix: str, shard_index: int, num_shards: int) -> str:
"""Return the filename for a parquet file."""
return f'{prefix}-{shard_index:05d}-of-{num_shards:05d}.parquet'
def _flatten_keys(rowid: str, nested_input: Iterable, location: list[int],
is_primitive_predicate: Callable[[object], bool]) -> Iterator[VectorKey]:
if is_primitive_predicate(nested_input) or is_primitive(nested_input) or isinstance(
nested_input, dict):
yield (rowid, *location)
return
for i, input in enumerate(nested_input):
yield from _flatten_keys(rowid, input, [*location, i], is_primitive_predicate)
def flatten_keys(
rowids: Iterable[str],
nested_input: Iterable,
is_primitive_predicate: Callable[[object],
bool] = is_primitive) -> Iterator[Optional[VectorKey]]:
"""Flatten the rowids of a nested input."""
for rowid, input in zip(rowids, nested_input):
if input is None:
yield None
continue
yield from _flatten_keys(rowid, input, [], is_primitive_predicate)
Tin = TypeVar('Tin')
Tout = TypeVar('Tout')
def sparse_to_dense_compute(
sparse_input: Iterator[Optional[Tin]],
func: Callable[[Iterable[Tin]], Iterable[Tout]]) -> Iterator[Optional[Tout]]:
"""Densifies the input before calling the provided `func` and sparsifies the output."""
locations: list[int] = []
total_size: int = 0
def densify(x: Iterator[Optional[Tin]]) -> Iterator[Tin]:
nonlocal locations, total_size
for i, value in enumerate(x):
total_size += 1
if value is not None:
locations.append(i)
yield value
dense_input = densify(sparse_input)
dense_output = iter(func(dense_input))
index = 0
location_index = 0
while True:
try:
out = next(dense_output)
out_index = locations[location_index]
while index < out_index:
yield None
index += 1
yield out
location_index += 1
index += 1
except StopIteration:
while index < total_size:
yield None
index += 1
return