Spaces:
Runtime error
Runtime error
"""Sentence-BERT embeddings. Open-source models, designed to run on device.""" | |
from typing import Iterable, cast | |
from typing_extensions import override | |
from ..schema import Item, RichData | |
from ..signal import TextEmbeddingSignal | |
from ..splitters.chunk_splitter import split_text | |
from .embedding import compute_split_embeddings | |
from .transformer_utils import get_model | |
# The `all-mpnet-base-v2` model provides the best quality, while `all-MiniLM-L6-v2`` is 5 times | |
# faster and still offers good quality. See https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models/ | |
MINI_LM_MODEL = 'all-MiniLM-L6-v2' | |
# Maps a tuple of model name and device to the optimal batch size, found empirically. | |
_OPTIMAL_BATCH_SIZES: dict[str, dict[str, int]] = { | |
MINI_LM_MODEL: { | |
'': 64, # Default batch size. | |
'mps': 256, | |
} | |
} | |
class SBERT(TextEmbeddingSignal): | |
"""Computes embeddings using Sentence-BERT library.""" | |
name = 'sbert' | |
display_name = 'SBERT Embeddings' | |
def compute(self, docs: Iterable[RichData]) -> Iterable[Item]: | |
"""Call the embedding function.""" | |
batch_size, model = get_model(MINI_LM_MODEL, _OPTIMAL_BATCH_SIZES[MINI_LM_MODEL]) | |
embed_fn = model.encode | |
split_fn = split_text if self._split else None | |
docs = cast(Iterable[str], docs) | |
yield from compute_split_embeddings(docs, batch_size, embed_fn=embed_fn, split_fn=split_fn) | |