Spaces:
Runtime error
Runtime error
"""A signal to compute semantic search for a document.""" | |
from typing import Any, Iterable, Optional, Union | |
import numpy as np | |
from scipy.interpolate import interp1d | |
from typing_extensions import override | |
from ..batch_utils import flat_batched_compute | |
from ..embeddings.embedding import EmbedFn, get_embed_fn | |
from ..embeddings.vector_store import VectorDBIndex | |
from ..schema import Field, Item, PathKey, RichData, SignalInputType, SpanVector, field, lilac_span | |
from ..signal import VectorSignal | |
_BATCH_SIZE = 4096 | |
class SemanticSimilaritySignal(VectorSignal): | |
"""Compute semantic similarity for a query and a document. | |
\ | |
This is done by embedding the query with the same embedding as the document and computing a | |
a similarity score between them. | |
""" | |
name = 'semantic_similarity' | |
display_name = 'Semantic Similarity' | |
input_type = SignalInputType.TEXT | |
query: str | |
_embed_fn: EmbedFn | |
# Dot products are in the range [-1, 1]. We want to map this to [0, 1] for the similarity score | |
# with a slight bias towards 1 since dot product of <0.2 is not really relevant. | |
_interpolate_fn = interp1d([-1, 0.2, 1], [0, 0.5, 1]) | |
_search_text_embedding: Optional[np.ndarray] = None | |
def __init__(self, query: Union[str, bytes], embedding: str, **kwargs: Any): | |
if isinstance(query, bytes): | |
raise ValueError('Image queries are not yet supported for SemanticSimilarity.') | |
super().__init__(query=query, embedding=embedding, **kwargs) # type: ignore | |
self._embed_fn = get_embed_fn(embedding, split=False) | |
def fields(self) -> Field: | |
return field(fields=[field(dtype='string_span', fields={'score': 'float32'})]) | |
def _get_search_embedding(self) -> np.ndarray: | |
"""Return the embedding for the search text.""" | |
if self._search_text_embedding is None: | |
span_vector = list(self._embed_fn([self.query]))[0][0] | |
self._search_text_embedding = span_vector['vector'].reshape(-1) | |
return self._search_text_embedding | |
def _score_span_vectors(self, | |
span_vectors: Iterable[Iterable[SpanVector]]) -> Iterable[Optional[Item]]: | |
return flat_batched_compute( | |
span_vectors, f=self._compute_span_vector_batch, batch_size=_BATCH_SIZE) | |
def _compute_span_vector_batch(self, span_vectors: Iterable[SpanVector]) -> list[Item]: | |
batch_matrix = np.array([sv['vector'] for sv in span_vectors]) | |
spans = [sv['span'] for sv in span_vectors] | |
scores = batch_matrix.dot(self._get_search_embedding()).reshape(-1).tolist() | |
return [lilac_span(start, end, {'score': score}) for score, (start, end) in zip(scores, spans)] | |
def compute(self, data: Iterable[RichData]) -> Iterable[Optional[Item]]: | |
span_vectors = self._embed_fn(data) | |
return self._score_span_vectors(span_vectors) | |
def vector_compute(self, keys: Iterable[PathKey], | |
vector_index: VectorDBIndex) -> Iterable[Optional[Item]]: | |
span_vectors = vector_index.get(keys) | |
return self._score_span_vectors(span_vectors) | |
def vector_compute_topk( | |
self, | |
topk: int, | |
vector_index: VectorDBIndex, | |
keys: Optional[Iterable[PathKey]] = None) -> list[tuple[PathKey, Optional[Item]]]: | |
query = self._get_search_embedding() | |
topk_keys = [key for key, _ in vector_index.topk(query, topk, keys)] | |
return list(zip(topk_keys, self.vector_compute(topk_keys, vector_index))) | |