imomayiz commited on
Commit
4ba3b33
1 Parent(s): dc5bb62

Upload fuzzy_matching.py

Browse files

feat: a python script with functions used to process and map users locations to the most similar matches from a reference dataset of town names

Files changed (1) hide show
  1. src/fuzzy_matching.py +258 -0
src/fuzzy_matching.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Problem:
3
+ Nt3awnou's platform collects raw data filled manually by users (people in need).
4
+ Among this data is the user's localisation.
5
+ The localisation is a text input that is not standardized:
6
+ i.e. a user can input a single or multiple locations
7
+ (either douars/provinces/communes/regions or all combined),
8
+ in arabic or latin, with misspellings etc.
9
+ This doesn't help in visualization or in statistics
10
+ where localisations can be redundant because they were written in different manners.
11
+
12
+ Examples
13
+ ```
14
+ دوار تجكَالت
15
+ ابرداتن ازكور
16
+ خزامة
17
+ Tansgharte
18
+ دوار امندار
19
+ Douar Essour Tidrara Aghwatim Tahnaouet Al Haouz
20
+ دوار تكاديرت
21
+ Douar Essour tidrara- aghouatine- Tahanaout-El Haouz
22
+ ```
23
+ Solution:
24
+ We collected a reference dataset that contains all douar names (arabic and latin)
25
+ with their corresponding regions, communes and provinces.
26
+ We developed methods using fuzzy matching and phonetics
27
+ to map the user's localisation to the closest match in the reference dataset
28
+
29
+ """
30
+
31
+ from typing import Tuple
32
+ from pyphonetics import RefinedSoundex, Metaphone
33
+ import math
34
+ import difflib
35
+ import re
36
+
37
+
38
+ EPICENTER_LOCATION = [31.12210171476489, -8.42945837915193]
39
+ certainty_threshold = 1
40
+
41
+
42
+ def extract_ngrams(text, n):
43
+ """
44
+ A function that returns a list of n-grams from a text
45
+ """
46
+ ngrams = []
47
+
48
+ if n < 1 or n > len(text):
49
+ return ngrams # Return an empty list if n is invalid
50
+
51
+ # Iterate through the text and extract n-grams
52
+ for i in range(len(text) - n + 1):
53
+ ngram = text[i:i + n]
54
+ ngrams.append(' '.join(ngram))
55
+
56
+ return ngrams
57
+
58
+
59
+ def get_phonetics_distance(w1, w2):
60
+ """
61
+ A function that calculates levenhstein distance between phonetics
62
+ representation of two words: add error term to the score
63
+ """
64
+ rs = RefinedSoundex()
65
+ mt = Metaphone()
66
+ d1 = mt.distance(w1, w2, metric='levenshtein')
67
+ d2 = rs.distance(w1, w2, metric='levenshtein')
68
+ res = (d1 + d2) / 2 + 0.05
69
+ return res
70
+
71
+
72
+ def get_top_n_phonetics_matches(
73
+ w: str, ref_words: list, threshold=1, top_n=1) -> list[Tuple]:
74
+ """
75
+ A function that returns the top_n closest words to w from ref_words
76
+ for which distance <= threshold
77
+ using phonetical representation
78
+ """
79
+ if not w:
80
+ return list()
81
+ distances = {x: get_phonetics_distance(w, x) for x in ref_words}
82
+ selected_words = {x: d for x, d in distances.items() if d<=threshold}
83
+ sorted_d = dict(sorted(selected_words.items(), key=lambda item: item[1]))
84
+
85
+ return list(sorted_d.items())[:top_n]
86
+
87
+
88
+ def get_geometric_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
89
+ """
90
+ A function that returns the distance between two points on earth
91
+ using the haversine formula
92
+ """
93
+ dlon = math.radians(lon2 - lon1)
94
+ dlat = math.radians(lat2 - lat1)
95
+ a0 = (math.sin(dlat / 2)) ** 2 + math.cos(math.radians(lat1))
96
+ a = a0 * math.cos(math.radians(lat2)) * (math.sin(dlon / 2)) ** 2
97
+ c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
98
+ distance = 6371 * c
99
+ return distance
100
+
101
+
102
+ def are_village_names_similar(village_a: str, village_b: str) -> float:
103
+ """
104
+ A function that returns True if the two villages
105
+ are similar using strict fuzzy matching
106
+ """
107
+ if difflib.SequenceMatcher(None, village_a, village_b).ratio() >= 0.90:
108
+ return True
109
+ return False
110
+
111
+
112
+ def get_uncertainty_range(input_dict: dict, threshold: float) -> list:
113
+ """
114
+ A function that returns a list of tuples of the closest matches
115
+ """
116
+ if len(input_dict)<=1:
117
+ return input_dict
118
+
119
+ # sort by distance
120
+ sorted_items = sorted(input_dict.items(), key=lambda item: item[1][1])
121
+ data = {key: value for key, value in sorted_items}
122
+
123
+ # Iterate through the keys in the dictionary
124
+ keys = list(data.keys())
125
+ min_key = keys[0]
126
+ min_value = data[min_key][1]
127
+
128
+ # Initialize a list to store the result tuples
129
+ result = {f"{min_key}":data[min_key]}
130
+
131
+ for j in range(1, len(keys)):
132
+ key2 = keys[j]
133
+ value2 = data[key2][1]
134
+
135
+ # Calculate the absolute difference between the float values
136
+ difference = abs(min_value - value2)
137
+
138
+ # If the difference is less than the threshold, add the tuple to the result
139
+ if difference <= threshold:
140
+ result[key2] = data[key2]
141
+ else:
142
+ break
143
+
144
+ return result
145
+
146
+
147
+ def match_word(w, ref_dict, select_one_match=False):
148
+ """
149
+ A function that returns the closest match of w from ref_dict
150
+ using phonetical representation and fuzzy matching
151
+ """
152
+ w = w.strip().upper()
153
+
154
+ if len(w)==0:
155
+ return {}
156
+
157
+ else:
158
+ closest_ref_w = dict()
159
+ use_phonetics = True
160
+
161
+ for category, names in ref_dict.items():
162
+ # check exact matching
163
+ if w in names:
164
+ use_phonetics = False
165
+ closest_ref_w[category] = (w, 0)
166
+ break
167
+
168
+ # check textual similarity (fuzzy matching)
169
+ sim = list(map(lambda x:are_village_names_similar(w,x), names))
170
+ similar_names = [names[i] for i in range(len(names)) if sim[i]==True]
171
+ if similar_names:
172
+ use_phonetics = False
173
+ closest_ref_w[category] = (similar_names[0], 0.01) if select_one_match else list(map(lambda x:(x, 0.01), similar_names))
174
+
175
+ # if no similar name was found check phonetical similarity
176
+ else:
177
+ res = get_top_n_phonetics_matches(w, names, threshold=2, top_n=1)
178
+ if res:
179
+ closest_ref_w[category] = res[0] # get closest match
180
+
181
+ if closest_ref_w and use_phonetics:
182
+ if not select_one_match:
183
+ closest_ref_w = get_uncertainty_range(closest_ref_w, certainty_threshold)
184
+ else:
185
+ k, v = min(closest_ref_w.items(), key=lambda x: x[1][1])
186
+ closest_ref_w = {k: v}
187
+
188
+ return closest_ref_w
189
+
190
+
191
+ def parse_and_map_localisation(text: str, ref_dict: dict, select_one_match: bool=True):
192
+ """
193
+ A function that parses text containing users localisation
194
+ and returns the closest matches per categoty from ref_dict
195
+ Example:
196
+ input = COMMUNE MZODA : DOUARS : TOUKHRIBIN –TLAKEMT - COMMUNE IMINDOUNITE : DOUAR AZARZO
197
+ output = {'commune_fr': ('IMINDOUNIT', 0.01), 'nom_fr': ('TOUKHRIBINE', 0.01)}
198
+ """
199
+ toxic = r"\bدوار|مصلى|\(|\)|douars?|communes?|cercles?|provinces?|villes?|regions?|caidate?|and|جماعة|\b|:|-|\d"
200
+ text = re.sub(toxic, '', text.lower())
201
+ regex_pattern = r"\|| |\.|,|/|et |و "
202
+ tokens = re.split(regex_pattern, text.replace('-', ' '))
203
+ filtered_tokens = [s for s in tokens if s.strip() != '']
204
+
205
+ ngrams_mapping = {}
206
+
207
+ for n in range(1, len(filtered_tokens)+1):
208
+
209
+ # generate ngrams
210
+ ngrams = extract_ngrams(filtered_tokens, n)
211
+
212
+ # init dict with ngram mapping
213
+ mapping_ngram = {}
214
+
215
+ # generate a mapping for the ngram with argmin matches
216
+ for tok in ngrams:
217
+ res = match_word(tok, ref_dict, select_one_match=select_one_match)
218
+ if not res:
219
+ continue
220
+
221
+ min_k, min_v = min(res.items(), key=lambda x:x[1][1])
222
+
223
+ # if min_k in previous tokens, then choose the min, else add it to mapping
224
+ if min_k in mapping_ngram:
225
+ saved_match, saved_distance = mapping_ngram[min_k]
226
+
227
+ if saved_distance > min_v[1]:
228
+ mapping_ngram[min_k] = min_v
229
+
230
+ else:
231
+ continue
232
+
233
+ else:
234
+ mapping_ngram[min_k] = min_v
235
+
236
+ ngrams_mapping[n] = mapping_ngram
237
+
238
+
239
+ # first squeeze dict s.t. one match remains per category
240
+ categories = ref_dict.keys()
241
+ result = {}
242
+ for _, inner_dict in ngrams_mapping.items():
243
+ for k in categories:
244
+ # Check if the key exists in the inner dictionary
245
+ if k in inner_dict:
246
+ current_match, current_val = inner_dict[k]
247
+ if k in result:
248
+ previous_match, previous_val = result[k]
249
+ if current_val < previous_val:
250
+ result[k] = (current_match, current_val)
251
+ else:
252
+ result[k] = (current_match, current_val)
253
+
254
+ # then, discard matches with a high distance from min (set 0.5+min_d as threshold)
255
+ thresh = min(result.values(), key=lambda x:x[1])[1] + 0.5
256
+ output = {k: v_d for k, v_d in result.items() if v_d[1]<=thresh}
257
+
258
+ return output