Spaces:
Running
Running
Support generating long clips
Browse files
app.py
CHANGED
@@ -30,102 +30,11 @@ assert phone_set[0][1:-1] == "SEP"
|
|
30 |
assert "sil" in phone_set
|
31 |
sil_idx = phone_set.index("sil")
|
32 |
|
33 |
-
vietnamese_characters = [
|
34 |
-
"a",
|
35 |
-
"à",
|
36 |
-
"á",
|
37 |
-
"ả",
|
38 |
-
"ã",
|
39 |
-
"ạ",
|
40 |
-
"ă",
|
41 |
-
"ằ",
|
42 |
-
"ắ",
|
43 |
-
"ẳ",
|
44 |
-
"ẵ",
|
45 |
-
"ặ",
|
46 |
-
"â",
|
47 |
-
"ầ",
|
48 |
-
"ấ",
|
49 |
-
"ẩ",
|
50 |
-
"ẫ",
|
51 |
-
"ậ",
|
52 |
-
"e",
|
53 |
-
"è",
|
54 |
-
"é",
|
55 |
-
"ẻ",
|
56 |
-
"ẽ",
|
57 |
-
"ẹ",
|
58 |
-
"ê",
|
59 |
-
"ề",
|
60 |
-
"ế",
|
61 |
-
"ể",
|
62 |
-
"ễ",
|
63 |
-
"ệ",
|
64 |
-
"i",
|
65 |
-
"ì",
|
66 |
-
"í",
|
67 |
-
"ỉ",
|
68 |
-
"ĩ",
|
69 |
-
"ị",
|
70 |
-
"o",
|
71 |
-
"ò",
|
72 |
-
"ó",
|
73 |
-
"ỏ",
|
74 |
-
"õ",
|
75 |
-
"ọ",
|
76 |
-
"ô",
|
77 |
-
"ồ",
|
78 |
-
"ố",
|
79 |
-
"ổ",
|
80 |
-
"ỗ",
|
81 |
-
"ộ",
|
82 |
-
"ơ",
|
83 |
-
"ờ",
|
84 |
-
"ớ",
|
85 |
-
"ở",
|
86 |
-
"ỡ",
|
87 |
-
"ợ",
|
88 |
-
"u",
|
89 |
-
"ù",
|
90 |
-
"ú",
|
91 |
-
"ủ",
|
92 |
-
"ũ",
|
93 |
-
"ụ",
|
94 |
-
"ư",
|
95 |
-
"ừ",
|
96 |
-
"ứ",
|
97 |
-
"ử",
|
98 |
-
"ữ",
|
99 |
-
"ự",
|
100 |
-
"y",
|
101 |
-
"ỳ",
|
102 |
-
"ý",
|
103 |
-
"ỷ",
|
104 |
-
"ỹ",
|
105 |
-
"ỵ",
|
106 |
-
"b",
|
107 |
-
"c",
|
108 |
-
"d",
|
109 |
-
"đ",
|
110 |
-
"g",
|
111 |
-
"h",
|
112 |
-
"k",
|
113 |
-
"l",
|
114 |
-
"m",
|
115 |
-
"n",
|
116 |
-
"p",
|
117 |
-
"q",
|
118 |
-
"r",
|
119 |
-
"s",
|
120 |
-
"t",
|
121 |
-
"v",
|
122 |
-
"x",
|
123 |
-
]
|
124 |
-
alphabet = "".join(vietnamese_characters)
|
125 |
space_re = regex.compile(r"\s+")
|
126 |
number_re = regex.compile("([0-9]+)")
|
127 |
digits = ["không", "một", "hai", "ba", "bốn", "năm", "sáu", "bảy", "tám", "chín"]
|
128 |
num_re = regex.compile(r"([0-9.,]*[0-9])")
|
|
|
129 |
keep_text_and_num_re = regex.compile(rf"[^\s{alphabet}.,0-9]")
|
130 |
keep_text_re = regex.compile(rf"[^\s{alphabet}]")
|
131 |
|
@@ -225,7 +134,7 @@ def text_to_phone_idx(text):
|
|
225 |
return tokens
|
226 |
|
227 |
|
228 |
-
def text_to_speech(text):
|
229 |
# prevent too long text
|
230 |
if len(text) > 500:
|
231 |
text = text[:500]
|
@@ -237,9 +146,6 @@ def text_to_speech(text):
|
|
237 |
}
|
238 |
|
239 |
# predict phoneme duration
|
240 |
-
duration_net = DurationNet(hps.data.vocab_size, 64, 4).to(device)
|
241 |
-
duration_net.load_state_dict(torch.load(duration_model_path, map_location=device))
|
242 |
-
duration_net = duration_net.eval()
|
243 |
phone_length = torch.from_numpy(batch["phone_length"].copy()).long().to(device)
|
244 |
phone_idx = torch.from_numpy(batch["phone_idx"].copy()).long().to(device)
|
245 |
with torch.inference_mode():
|
@@ -249,24 +155,7 @@ def text_to_speech(text):
|
|
249 |
)
|
250 |
phone_duration = torch.where(phone_idx == 0, 0, phone_duration)
|
251 |
|
252 |
-
|
253 |
-
hps.data.vocab_size,
|
254 |
-
hps.data.filter_length // 2 + 1,
|
255 |
-
hps.train.segment_size // hps.data.hop_length,
|
256 |
-
**vars(hps.model),
|
257 |
-
).to(device)
|
258 |
-
del generator.enc_q
|
259 |
-
ckpt = torch.load(lightspeed_model_path, map_location=device)
|
260 |
-
params = {}
|
261 |
-
for k, v in ckpt["net_g"].items():
|
262 |
-
k = k[7:] if k.startswith("module.") else k
|
263 |
-
params[k] = v
|
264 |
-
generator.load_state_dict(params, strict=False)
|
265 |
-
del ckpt, params
|
266 |
-
generator = generator.eval()
|
267 |
-
# mininum 1 frame for each phone
|
268 |
-
# phone_duration = torch.clamp_min(phone_duration, hps.data.hop_length * 1000 / hps.data.sampling_rate)
|
269 |
-
# phone_duration = torch.where(phone_idx == 0, 0, phone_duration)
|
270 |
end_time = torch.cumsum(phone_duration, dim=-1)
|
271 |
start_time = end_time - phone_duration
|
272 |
start_frame = start_time / 1000 * hps.data.sampling_rate / hps.data.hop_length
|
@@ -285,8 +174,40 @@ def text_to_speech(text):
|
|
285 |
return (wave * (2**15)).astype(np.int16)
|
286 |
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
def speak(text):
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
return hps.data.sampling_rate, y
|
291 |
|
292 |
|
|
|
30 |
assert "sil" in phone_set
|
31 |
sil_idx = phone_set.index("sil")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
space_re = regex.compile(r"\s+")
|
34 |
number_re = regex.compile("([0-9]+)")
|
35 |
digits = ["không", "một", "hai", "ba", "bốn", "năm", "sáu", "bảy", "tám", "chín"]
|
36 |
num_re = regex.compile(r"([0-9.,]*[0-9])")
|
37 |
+
alphabet = "aàáảãạăằắẳẵặâầấẩẫậeèéẻẽẹêềếểễệiìíỉĩịoòóỏõọôồốổỗộơờớởỡợuùúủũụưừứửữựyỳýỷỹỵbcdđghklmnpqrstvx"
|
38 |
keep_text_and_num_re = regex.compile(rf"[^\s{alphabet}.,0-9]")
|
39 |
keep_text_re = regex.compile(rf"[^\s{alphabet}]")
|
40 |
|
|
|
134 |
return tokens
|
135 |
|
136 |
|
137 |
+
def text_to_speech(duration_net, generator, text):
|
138 |
# prevent too long text
|
139 |
if len(text) > 500:
|
140 |
text = text[:500]
|
|
|
146 |
}
|
147 |
|
148 |
# predict phoneme duration
|
|
|
|
|
|
|
149 |
phone_length = torch.from_numpy(batch["phone_length"].copy()).long().to(device)
|
150 |
phone_idx = torch.from_numpy(batch["phone_idx"].copy()).long().to(device)
|
151 |
with torch.inference_mode():
|
|
|
155 |
)
|
156 |
phone_duration = torch.where(phone_idx == 0, 0, phone_duration)
|
157 |
|
158 |
+
# generate waveform
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
end_time = torch.cumsum(phone_duration, dim=-1)
|
160 |
start_time = end_time - phone_duration
|
161 |
start_frame = start_time / 1000 * hps.data.sampling_rate / hps.data.hop_length
|
|
|
174 |
return (wave * (2**15)).astype(np.int16)
|
175 |
|
176 |
|
177 |
+
def load_models():
|
178 |
+
duration_net = DurationNet(hps.data.vocab_size, 64, 4).to(device)
|
179 |
+
duration_net.load_state_dict(torch.load(duration_model_path, map_location=device))
|
180 |
+
duration_net = duration_net.eval()
|
181 |
+
generator = SynthesizerTrn(
|
182 |
+
hps.data.vocab_size,
|
183 |
+
hps.data.filter_length // 2 + 1,
|
184 |
+
hps.train.segment_size // hps.data.hop_length,
|
185 |
+
**vars(hps.model),
|
186 |
+
).to(device)
|
187 |
+
del generator.enc_q
|
188 |
+
ckpt = torch.load(lightspeed_model_path, map_location=device)
|
189 |
+
params = {}
|
190 |
+
for k, v in ckpt["net_g"].items():
|
191 |
+
k = k[7:] if k.startswith("module.") else k
|
192 |
+
params[k] = v
|
193 |
+
generator.load_state_dict(params, strict=False)
|
194 |
+
del ckpt, params
|
195 |
+
generator = generator.eval()
|
196 |
+
return duration_net, generator
|
197 |
+
|
198 |
+
|
199 |
def speak(text):
|
200 |
+
duration_net, generator = load_models()
|
201 |
+
paragraphs = text.split("\n")
|
202 |
+
clips = [] # list of audio clips
|
203 |
+
# silence = np.zeros(hps.data.sampling_rate // 4)
|
204 |
+
for paragraph in paragraphs:
|
205 |
+
paragraph = paragraph.strip()
|
206 |
+
if paragraph == "":
|
207 |
+
continue
|
208 |
+
clips.append(text_to_speech(duration_net, generator, paragraph))
|
209 |
+
# clips.append(silence)
|
210 |
+
y = np.concatenate(clips)
|
211 |
return hps.data.sampling_rate, y
|
212 |
|
213 |
|