Spaces:
Sleeping
Sleeping
File size: 4,970 Bytes
50262ab ce8a201 7c6ede0 50262ab ce8a201 7c6ede0 50262ab ce8a201 7c6ede0 ce8a201 7c6ede0 50262ab 7c6ede0 ce8a201 7c6ede0 ce8a201 7c6ede0 ce8a201 7c6ede0 50262ab 7c6ede0 ede25a6 50262ab 7c6ede0 ce8a201 7c6ede0 ce8a201 7c6ede0 50262ab 7c6ede0 ede25a6 50262ab 7c6ede0 ce8a201 7c6ede0 ce8a201 7c6ede0 50262ab 7c6ede0 ede25a6 50262ab 7c6ede0 ce8a201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
from nemo.collections.asr.models import ASRModel
import yt_dlp as youtube_dl
import os
import tempfile
import torch
import gradio as gr
from pydub import AudioSegment
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME="nvidia/parakeet-tdt-1.1b"
YT_LENGTH_LIMIT_S=3600
model = ASRModel.from_pretrained(model_name=MODEL_NAME).to(device)
model.eval()
def get_transcripts(audio_path):
text = model.transcribe([audio_path])[0][0]
return text
article = (
"<p style='text-align: center'>"
"<a href='https://huggingface.co/nvidia/parakeet-tdt-1.1b' target='_blank'>🎙️ Learn more about Parakeet TDT model</a> | "
"<a href='https://arxiv.org/abs/2304.06795' target='_blank'>📚 TDT ICML paper</a> | "
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>🧑💻 Repository</a>"
"</p>"
)
examples = [
["data/conversation.wav"],
["data/id10270_5r0dWxy17C8-00001.wav"],
]
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
audio = AudioSegment.from_file(filepath)
wav_filepath = os.path.join(tmpdirname, "audio.wav")
audio.export(wav_filepath, format="wav")
text = get_transcripts(wav_filepath)
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=get_transcripts,
inputs=[
gr.Audio(sources="microphone", type="filepath")
],
outputs="text",
theme="huggingface",
title="Parakeet TDT 1.1B: Transcribe Audio",
description=(
"Transcribe microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
" of arbitrary length. TDT models are 75% more efficient than similar size RNNT model"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=get_transcripts,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
],
outputs="text",
theme="huggingface",
title="Parakeet TDT 1.1B: Transcribe Audio",
description=(
"Transcribe microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
" of arbitrary length. TDT models are 75% more efficient than similar size RNNT model"
),
allow_flagging="never",
)
youtube_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["html", "text"],
theme="huggingface",
title="Parakeet TDT 1.1B: Transcribe Audio",
description=(
"Transcribe microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
" of arbitrary length. TDT models are 75% more efficient than similar size RNNT model"
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
demo.launch()
|