import jax from jax import lax from jax.nn import initializers import jax.numpy as jnp import flax from flax.linen.module import merge_param import flax.linen as nn from typing import Callable, Iterable, Optional, Tuple, Union, Any import functools import pickle from . import utils PRNGKey = Any Array = Any Shape = Tuple[int] Dtype = Any class InceptionV3(nn.Module): """ InceptionV3 network. Reference: https://arxiv.org/abs/1512.00567 Ported mostly from: https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py Attributes: include_head (bool): If True, include classifier head. num_classes (int): Number of classes. pretrained (bool): If True, use pretrained weights. transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. aux_logits (bool): If True, add an auxiliary branch that can improve training. dtype (str): Data type. """ include_head: bool=False num_classes: int=1000 pretrained: bool=False transform_input: bool=False aux_logits: bool=False ckpt_path: str='https://www.dropbox.com/s/0zo4pd6cfwgzem7/inception_v3_weights_fid.pickle?dl=1' dtype: str='float32' def setup(self): if self.pretrained: ckpt_file = utils.download(self.ckpt_path) self.params_dict = pickle.load(open(ckpt_file, 'rb')) self.num_classes_ = 1000 else: self.params_dict = None self.num_classes_ = self.num_classes @nn.compact def __call__(self, x, train=True, rng=jax.random.PRNGKey(0)): """ Args: x (tensor): Input image, shape [B, H, W, C]. train (bool): If True, training mode. rng (jax.random.PRNGKey): Random seed. """ x = self._transform_input(x) x = BasicConv2d(out_channels=32, kernel_size=(3, 3), strides=(2, 2), params_dict=utils.get(self.params_dict, 'Conv2d_1a_3x3'), dtype=self.dtype)(x, train) x = BasicConv2d(out_channels=32, kernel_size=(3, 3), params_dict=utils.get(self.params_dict, 'Conv2d_2a_3x3'), dtype=self.dtype)(x, train) x = BasicConv2d(out_channels=64, kernel_size=(3, 3), padding=((1, 1), (1, 1)), params_dict=utils.get(self.params_dict, 'Conv2d_2b_3x3'), dtype=self.dtype)(x, train) x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2)) x = BasicConv2d(out_channels=80, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'Conv2d_3b_1x1'), dtype=self.dtype)(x, train) x = BasicConv2d(out_channels=192, kernel_size=(3, 3), params_dict=utils.get(self.params_dict, 'Conv2d_4a_3x3'), dtype=self.dtype)(x, train) x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2)) x = InceptionA(pool_features=32, params_dict=utils.get(self.params_dict, 'Mixed_5b'), dtype=self.dtype)(x, train) x = InceptionA(pool_features=64, params_dict=utils.get(self.params_dict, 'Mixed_5c'), dtype=self.dtype)(x, train) x = InceptionA(pool_features=64, params_dict=utils.get(self.params_dict, 'Mixed_5d'), dtype=self.dtype)(x, train) x = InceptionB(params_dict=utils.get(self.params_dict, 'Mixed_6a'), dtype=self.dtype)(x, train) x = InceptionC(channels_7x7=128, params_dict=utils.get(self.params_dict, 'Mixed_6b'), dtype=self.dtype)(x, train) x = InceptionC(channels_7x7=160, params_dict=utils.get(self.params_dict, 'Mixed_6c'), dtype=self.dtype)(x, train) x = InceptionC(channels_7x7=160, params_dict=utils.get(self.params_dict, 'Mixed_6d'), dtype=self.dtype)(x, train) x = InceptionC(channels_7x7=192, params_dict=utils.get(self.params_dict, 'Mixed_6e'), dtype=self.dtype)(x, train) aux = None if self.aux_logits and train: aux = InceptionAux(num_classes=self.num_classes_, params_dict=utils.get(self.params_dict, 'AuxLogits'), dtype=self.dtype)(x, train) x = InceptionD(params_dict=utils.get(self.params_dict, 'Mixed_7a'), dtype=self.dtype)(x, train) x = InceptionE(avg_pool, params_dict=utils.get(self.params_dict, 'Mixed_7b'), dtype=self.dtype)(x, train) # Following the implementation by @mseitzer, we use max pooling instead # of average pooling here. # See: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/inception.py#L320 x = InceptionE(nn.max_pool, params_dict=utils.get(self.params_dict, 'Mixed_7c'), dtype=self.dtype)(x, train) x = jnp.mean(x, axis=(1, 2), keepdims=True) if not self.include_head: return x x = nn.Dropout(rate=0.5)(x, deterministic=not train, rng=rng) x = jnp.reshape(x, newshape=(x.shape[0], -1)) x = Dense(features=self.num_classes_, params_dict=utils.get(self.params_dict, 'fc'), dtype=self.dtype)(x) if self.aux_logits: return x, aux return x def _transform_input(self, x): if self.transform_input: x_ch0 = jnp.expand_dims(x[..., 0], axis=-1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = jnp.expand_dims(x[..., 1], axis=-1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = jnp.expand_dims(x[..., 2], axis=-1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = jnp.concatenate((x_ch0, x_ch1, x_ch2), axis=-1) return x class Dense(nn.Module): features: int kernel_init: functools.partial=nn.initializers.lecun_normal() bias_init: functools.partial=nn.initializers.zeros params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x): x = nn.Dense(features=self.features, kernel_init=self.kernel_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['kernel']), bias_init=self.bias_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['bias']))(x) return x class BasicConv2d(nn.Module): out_channels: int kernel_size: Union[int, Iterable[int]]=(3, 3) strides: Optional[Iterable[int]]=(1, 1) padding: Union[str, Iterable[Tuple[int, int]]]='valid' use_bias: bool=False kernel_init: functools.partial=nn.initializers.lecun_normal() bias_init: functools.partial=nn.initializers.zeros params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): x = nn.Conv(features=self.out_channels, kernel_size=self.kernel_size, strides=self.strides, padding=self.padding, use_bias=self.use_bias, kernel_init=self.kernel_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['conv']['kernel']), bias_init=self.bias_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['conv']['bias']), dtype=self.dtype)(x) if self.params_dict is None: x = BatchNorm(epsilon=0.001, momentum=0.1, use_running_average=not train, dtype=self.dtype)(x) else: x = BatchNorm(epsilon=0.001, momentum=0.1, bias_init=lambda *_ : jnp.array(self.params_dict['bn']['bias']), scale_init=lambda *_ : jnp.array(self.params_dict['bn']['scale']), mean_init=lambda *_ : jnp.array(self.params_dict['bn']['mean']), var_init=lambda *_ : jnp.array(self.params_dict['bn']['var']), use_running_average=not train, dtype=self.dtype)(x) x = jax.nn.relu(x) return x class InceptionA(nn.Module): pool_features: int params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): branch1x1 = BasicConv2d(out_channels=64, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch1x1'), dtype=self.dtype)(x, train) branch5x5 = BasicConv2d(out_channels=48, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch5x5_1'), dtype=self.dtype)(x, train) branch5x5 = BasicConv2d(out_channels=64, kernel_size=(5, 5), padding=((2, 2), (2, 2)), params_dict=utils.get(self.params_dict, 'branch5x5_2'), dtype=self.dtype)(branch5x5, train) branch3x3dbl = BasicConv2d(out_channels=64, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'), dtype=self.dtype)(x, train) branch3x3dbl = BasicConv2d(out_channels=96, kernel_size=(3, 3), padding=((1, 1), (1, 1)), params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'), dtype=self.dtype)(branch3x3dbl, train) branch3x3dbl = BasicConv2d(out_channels=96, kernel_size=(3, 3), padding=((1, 1), (1, 1)), params_dict=utils.get(self.params_dict, 'branch3x3dbl_3'), dtype=self.dtype)(branch3x3dbl, train) branch_pool = avg_pool(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1))) branch_pool = BasicConv2d(out_channels=self.pool_features, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch_pool'), dtype=self.dtype)(branch_pool, train) output = jnp.concatenate((branch1x1, branch5x5, branch3x3dbl, branch_pool), axis=-1) return output class InceptionB(nn.Module): params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): branch3x3 = BasicConv2d(out_channels=384, kernel_size=(3, 3), strides=(2, 2), params_dict=utils.get(self.params_dict, 'branch3x3'), dtype=self.dtype)(x, train) branch3x3dbl = BasicConv2d(out_channels=64, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'), dtype=self.dtype)(x, train) branch3x3dbl = BasicConv2d(out_channels=96, kernel_size=(3, 3), padding=((1, 1), (1, 1)), params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'), dtype=self.dtype)(branch3x3dbl, train) branch3x3dbl = BasicConv2d(out_channels=96, kernel_size=(3, 3), strides=(2, 2), params_dict=utils.get(self.params_dict, 'branch3x3dbl_3'), dtype=self.dtype)(branch3x3dbl, train) branch_pool = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2)) output = jnp.concatenate((branch3x3, branch3x3dbl, branch_pool), axis=-1) return output class InceptionC(nn.Module): channels_7x7: int params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): branch1x1 = BasicConv2d(out_channels=192, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch1x1'), dtype=self.dtype)(x, train) branch7x7 = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch7x7_1'), dtype=self.dtype)(x, train) branch7x7 = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(1, 7), padding=((0, 0), (3, 3)), params_dict=utils.get(self.params_dict, 'branch7x7_2'), dtype=self.dtype)(branch7x7, train) branch7x7 = BasicConv2d(out_channels=192, kernel_size=(7, 1), padding=((3, 3), (0, 0)), params_dict=utils.get(self.params_dict, 'branch7x7_3'), dtype=self.dtype)(branch7x7, train) branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch7x7dbl_1'), dtype=self.dtype)(x, train) branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(7, 1), padding=((3, 3), (0, 0)), params_dict=utils.get(self.params_dict, 'branch7x7dbl_2'), dtype=self.dtype)(branch7x7dbl, train) branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(1, 7), padding=((0, 0), (3, 3)), params_dict=utils.get(self.params_dict, 'branch7x7dbl_3'), dtype=self.dtype)(branch7x7dbl, train) branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(7, 1), padding=((3, 3), (0, 0)), params_dict=utils.get(self.params_dict, 'branch7x7dbl_4'), dtype=self.dtype)(branch7x7dbl, train) branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7, kernel_size=(1, 7), padding=((0, 0), (3, 3)), params_dict=utils.get(self.params_dict, 'branch7x7dbl_5'), dtype=self.dtype)(branch7x7dbl, train) branch_pool = avg_pool(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1))) branch_pool = BasicConv2d(out_channels=192, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch_pool'), dtype=self.dtype)(branch_pool, train) output = jnp.concatenate((branch1x1, branch7x7, branch7x7dbl, branch_pool), axis=-1) return output class InceptionD(nn.Module): params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): branch3x3 = BasicConv2d(out_channels=192, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch3x3_1'), dtype=self.dtype)(x, train) branch3x3 = BasicConv2d(out_channels=320, kernel_size=(3, 3), strides=(2, 2), params_dict=utils.get(self.params_dict, 'branch3x3_2'), dtype=self.dtype)(branch3x3, train) branch7x7x3 = BasicConv2d(out_channels=192, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch7x7x3_1'), dtype=self.dtype)(x, train) branch7x7x3 = BasicConv2d(out_channels=192, kernel_size=(1, 7), padding=((0, 0), (3, 3)), params_dict=utils.get(self.params_dict, 'branch7x7x3_2'), dtype=self.dtype)(branch7x7x3, train) branch7x7x3 = BasicConv2d(out_channels=192, kernel_size=(7, 1), padding=((3, 3), (0, 0)), params_dict=utils.get(self.params_dict, 'branch7x7x3_3'), dtype=self.dtype)(branch7x7x3, train) branch7x7x3 = BasicConv2d(out_channels=192, kernel_size=(3, 3), strides=(2, 2), params_dict=utils.get(self.params_dict, 'branch7x7x3_4'), dtype=self.dtype)(branch7x7x3, train) branch_pool = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2)) output = jnp.concatenate((branch3x3, branch7x7x3, branch_pool), axis=-1) return output class InceptionE(nn.Module): pooling: Callable params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): branch1x1 = BasicConv2d(out_channels=320, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch1x1'), dtype=self.dtype)(x, train) branch3x3 = BasicConv2d(out_channels=384, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch3x3_1'), dtype=self.dtype)(x, train) branch3x3_a = BasicConv2d(out_channels=384, kernel_size=(1, 3), padding=((0, 0), (1, 1)), params_dict=utils.get(self.params_dict, 'branch3x3_2a'), dtype=self.dtype)(branch3x3, train) branch3x3_b = BasicConv2d(out_channels=384, kernel_size=(3, 1), padding=((1, 1), (0, 0)), params_dict=utils.get(self.params_dict, 'branch3x3_2b'), dtype=self.dtype)(branch3x3, train) branch3x3 = jnp.concatenate((branch3x3_a, branch3x3_b), axis=-1) branch3x3dbl = BasicConv2d(out_channels=448, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'), dtype=self.dtype)(x, train) branch3x3dbl = BasicConv2d(out_channels=384, kernel_size=(3, 3), padding=((1, 1), (1, 1)), params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'), dtype=self.dtype)(branch3x3dbl, train) branch3x3dbl_a = BasicConv2d(out_channels=384, kernel_size=(1, 3), padding=((0, 0), (1, 1)), params_dict=utils.get(self.params_dict, 'branch3x3dbl_3a'), dtype=self.dtype)(branch3x3dbl, train) branch3x3dbl_b = BasicConv2d(out_channels=384, kernel_size=(3, 1), padding=((1, 1), (0, 0)), params_dict=utils.get(self.params_dict, 'branch3x3dbl_3b'), dtype=self.dtype)(branch3x3dbl, train) branch3x3dbl = jnp.concatenate((branch3x3dbl_a, branch3x3dbl_b), axis=-1) branch_pool = self.pooling(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1))) branch_pool = BasicConv2d(out_channels=192, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'branch_pool'), dtype=self.dtype)(branch_pool, train) output = jnp.concatenate((branch1x1, branch3x3, branch3x3dbl, branch_pool), axis=-1) return output class InceptionAux(nn.Module): num_classes: int kernel_init: functools.partial=nn.initializers.lecun_normal() bias_init: functools.partial=nn.initializers.zeros params_dict: dict=None dtype: str='float32' @nn.compact def __call__(self, x, train=True): x = avg_pool(x, window_shape=(5, 5), strides=(3, 3)) x = BasicConv2d(out_channels=128, kernel_size=(1, 1), params_dict=utils.get(self.params_dict, 'conv0'), dtype=self.dtype)(x, train) x = BasicConv2d(out_channels=768, kernel_size=(5, 5), params_dict=utils.get(self.params_dict, 'conv1'), dtype=self.dtype)(x, train) x = jnp.mean(x, axis=(1, 2)) x = jnp.reshape(x, newshape=(x.shape[0], -1)) x = Dense(features=self.num_classes, params_dict=utils.get(self.params_dict, 'fc'), dtype=self.dtype)(x) return x def _absolute_dims(rank, dims): return tuple([rank + dim if dim < 0 else dim for dim in dims]) class BatchNorm(nn.Module): """BatchNorm Module. Taken from: https://github.com/google/flax/blob/master/flax/linen/normalization.py Attributes: use_running_average: if True, the statistics stored in batch_stats will be used instead of computing the batch statistics on the input. axis: the feature or non-batch axis of the input. momentum: decay rate for the exponential moving average of the batch statistics. epsilon: a small float added to variance to avoid dividing by zero. dtype: the dtype of the computation (default: float32). use_bias: if True, bias (beta) is added. use_scale: if True, multiply by scale (gamma). When the next layer is linear (also e.g. nn.relu), this can be disabled since the scaling will be done by the next layer. bias_init: initializer for bias, by default, zero. scale_init: initializer for scale, by default, one. axis_name: the axis name used to combine batch statistics from multiple devices. See `jax.pmap` for a description of axis names (default: None). axis_index_groups: groups of axis indices within that named axis representing subsets of devices to reduce over (default: None). For example, `[[0, 1], [2, 3]]` would independently batch-normalize over the examples on the first two and last two devices. See `jax.lax.psum` for more details. """ use_running_average: Optional[bool] = None axis: int = -1 momentum: float = 0.99 epsilon: float = 1e-5 dtype: Dtype = jnp.float32 use_bias: bool = True use_scale: bool = True bias_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.zeros scale_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.ones mean_init: Callable[[Shape], Array] = lambda s: jnp.zeros(s, jnp.float32) var_init: Callable[[Shape], Array] = lambda s: jnp.ones(s, jnp.float32) axis_name: Optional[str] = None axis_index_groups: Any = None @nn.compact def __call__(self, x, use_running_average: Optional[bool] = None): """Normalizes the input using batch statistics. NOTE: During initialization (when parameters are mutable) the running average of the batch statistics will not be updated. Therefore, the inputs fed during initialization don't need to match that of the actual input distribution and the reduction axis (set with `axis_name`) does not have to exist. Args: x: the input to be normalized. use_running_average: if true, the statistics stored in batch_stats will be used instead of computing the batch statistics on the input. Returns: Normalized inputs (the same shape as inputs). """ use_running_average = merge_param( 'use_running_average', self.use_running_average, use_running_average) x = jnp.asarray(x, jnp.float32) axis = self.axis if isinstance(self.axis, tuple) else (self.axis,) axis = _absolute_dims(x.ndim, axis) feature_shape = tuple(d if i in axis else 1 for i, d in enumerate(x.shape)) reduced_feature_shape = tuple(d for i, d in enumerate(x.shape) if i in axis) reduction_axis = tuple(i for i in range(x.ndim) if i not in axis) # see NOTE above on initialization behavior initializing = self.is_mutable_collection('params') ra_mean = self.variable('batch_stats', 'mean', self.mean_init, reduced_feature_shape) ra_var = self.variable('batch_stats', 'var', self.var_init, reduced_feature_shape) if use_running_average: mean, var = ra_mean.value, ra_var.value else: mean = jnp.mean(x, axis=reduction_axis, keepdims=False) mean2 = jnp.mean(lax.square(x), axis=reduction_axis, keepdims=False) if self.axis_name is not None and not initializing: concatenated_mean = jnp.concatenate([mean, mean2]) mean, mean2 = jnp.split( lax.pmean( concatenated_mean, axis_name=self.axis_name, axis_index_groups=self.axis_index_groups), 2) var = mean2 - lax.square(mean) if not initializing: ra_mean.value = self.momentum * ra_mean.value + (1 - self.momentum) * mean ra_var.value = self.momentum * ra_var.value + (1 - self.momentum) * var y = x - mean.reshape(feature_shape) mul = lax.rsqrt(var + self.epsilon) if self.use_scale: scale = self.param('scale', self.scale_init, reduced_feature_shape).reshape(feature_shape) mul = mul * scale y = y * mul if self.use_bias: bias = self.param('bias', self.bias_init, reduced_feature_shape).reshape(feature_shape) y = y + bias return jnp.asarray(y, self.dtype) def pool(inputs, init, reduce_fn, window_shape, strides, padding): """ Taken from: https://github.com/google/flax/blob/main/flax/linen/pooling.py Helper function to define pooling functions. Pooling functions are implemented using the ReduceWindow XLA op. NOTE: Be aware that pooling is not generally differentiable. That means providing a reduce_fn that is differentiable does not imply that pool is differentiable. Args: inputs: input data with dimensions (batch, window dims..., features). init: the initial value for the reduction reduce_fn: a reduce function of the form `(T, T) -> T`. window_shape: a shape tuple defining the window to reduce over. strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension. Returns: The output of the reduction for each window slice. """ strides = strides or (1,) * len(window_shape) assert len(window_shape) == len(strides), ( f"len({window_shape}) == len({strides})") strides = (1,) + strides + (1,) dims = (1,) + window_shape + (1,) is_single_input = False if inputs.ndim == len(dims) - 1: # add singleton batch dimension because lax.reduce_window always # needs a batch dimension. inputs = inputs[None] is_single_input = True assert inputs.ndim == len(dims), f"len({inputs.shape}) != len({dims})" if not isinstance(padding, str): padding = tuple(map(tuple, padding)) assert(len(padding) == len(window_shape)), ( f"padding {padding} must specify pads for same number of dims as " f"window_shape {window_shape}") assert(all([len(x) == 2 for x in padding])), ( f"each entry in padding {padding} must be length 2") padding = ((0,0),) + padding + ((0,0),) y = jax.lax.reduce_window(inputs, init, reduce_fn, dims, strides, padding) if is_single_input: y = jnp.squeeze(y, axis=0) return y def avg_pool(inputs, window_shape, strides=None, padding='VALID'): """ Pools the input by taking the average over a window. In comparison to flax.linen.avg_pool, this pooling operation does not consider the padded zero's for the average computation. Args: inputs: input data with dimensions (batch, window dims..., features). window_shape: a shape tuple defining the window to reduce over. strides: a sequence of `n` integers, representing the inter-window strides (default: `(1, ..., 1)`). padding: either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension (default: `'VALID'`). Returns: The average for each window slice. """ assert inputs.ndim == 4 assert len(window_shape) == 2 y = pool(inputs, 0., jax.lax.add, window_shape, strides, padding) ones = jnp.ones(shape=(1, inputs.shape[1], inputs.shape[2], 1)).astype(inputs.dtype) counts = jax.lax.conv_general_dilated(ones, jnp.expand_dims(jnp.ones(window_shape).astype(inputs.dtype), axis=(-2, -1)), window_strides=(1, 1), padding=((1, 1), (1, 1)), dimension_numbers=nn.linear._conv_dimension_numbers(ones.shape), feature_group_count=1) y = y / counts return y