File size: 9,670 Bytes
fa4dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import json
import os
import sys
import time
from dataclasses import dataclass, field
from fractions import Fraction

import torch as th
from torch import distributed, nn
from torch.nn.parallel.distributed import DistributedDataParallel

from .augment import FlipChannels, FlipSign, Remix, Shift
from .compressed import StemsSet, build_musdb_metadata, get_musdb_tracks
from .model import Demucs
from .parser import get_name, get_parser
from .raw import Rawset
from .tasnet import ConvTasNet
from .test import evaluate
from .train import train_model, validate_model
from .utils import human_seconds, load_model, save_model, sizeof_fmt


@dataclass
class SavedState:
    metrics: list = field(default_factory=list)
    last_state: dict = None
    best_state: dict = None
    optimizer: dict = None


def main():
    parser = get_parser()
    args = parser.parse_args()
    name = get_name(parser, args)
    print(f"Experiment {name}")

    if args.musdb is None and args.rank == 0:
        print(
            "You must provide the path to the MusDB dataset with the --musdb flag. "
            "To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.",
            file=sys.stderr)
        sys.exit(1)

    eval_folder = args.evals / name
    eval_folder.mkdir(exist_ok=True, parents=True)
    args.logs.mkdir(exist_ok=True)
    metrics_path = args.logs / f"{name}.json"
    eval_folder.mkdir(exist_ok=True, parents=True)
    args.checkpoints.mkdir(exist_ok=True, parents=True)
    args.models.mkdir(exist_ok=True, parents=True)

    if args.device is None:
        device = "cpu"
        if th.cuda.is_available():
            device = "cuda"
    else:
        device = args.device

    th.manual_seed(args.seed)
    # Prevents too many threads to be started when running `museval` as it can be quite
    # inefficient on NUMA architectures.
    os.environ["OMP_NUM_THREADS"] = "1"

    if args.world_size > 1:
        if device != "cuda" and args.rank == 0:
            print("Error: distributed training is only available with cuda device", file=sys.stderr)
            sys.exit(1)
        th.cuda.set_device(args.rank % th.cuda.device_count())
        distributed.init_process_group(backend="nccl",
                                       init_method="tcp://" + args.master,
                                       rank=args.rank,
                                       world_size=args.world_size)

    checkpoint = args.checkpoints / f"{name}.th"
    checkpoint_tmp = args.checkpoints / f"{name}.th.tmp"
    if args.restart and checkpoint.exists():
        checkpoint.unlink()

    if args.test:
        args.epochs = 1
        args.repeat = 0
        model = load_model(args.models / args.test)
    elif args.tasnet:
        model = ConvTasNet(audio_channels=args.audio_channels, samplerate=args.samplerate, X=args.X)
    else:
        model = Demucs(
            audio_channels=args.audio_channels,
            channels=args.channels,
            context=args.context,
            depth=args.depth,
            glu=args.glu,
            growth=args.growth,
            kernel_size=args.kernel_size,
            lstm_layers=args.lstm_layers,
            rescale=args.rescale,
            rewrite=args.rewrite,
            sources=4,
            stride=args.conv_stride,
            upsample=args.upsample,
            samplerate=args.samplerate
        )
    model.to(device)
    if args.show:
        print(model)
        size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters()))
        print(f"Model size {size}")
        return

    optimizer = th.optim.Adam(model.parameters(), lr=args.lr)

    try:
        saved = th.load(checkpoint, map_location='cpu')
    except IOError:
        saved = SavedState()
    else:
        model.load_state_dict(saved.last_state)
        optimizer.load_state_dict(saved.optimizer)

    if args.save_model:
        if args.rank == 0:
            model.to("cpu")
            model.load_state_dict(saved.best_state)
            save_model(model, args.models / f"{name}.th")
        return

    if args.rank == 0:
        done = args.logs / f"{name}.done"
        if done.exists():
            done.unlink()

    if args.augment:
        augment = nn.Sequential(FlipSign(), FlipChannels(), Shift(args.data_stride),
                                Remix(group_size=args.remix_group_size)).to(device)
    else:
        augment = Shift(args.data_stride)

    if args.mse:
        criterion = nn.MSELoss()
    else:
        criterion = nn.L1Loss()

    # Setting number of samples so that all convolution windows are full.
    # Prevents hard to debug mistake with the prediction being shifted compared
    # to the input mixture.
    samples = model.valid_length(args.samples)
    print(f"Number of training samples adjusted to {samples}")

    if args.raw:
        train_set = Rawset(args.raw / "train",
                           samples=samples + args.data_stride,
                           channels=args.audio_channels,
                           streams=[0, 1, 2, 3, 4],
                           stride=args.data_stride)

        valid_set = Rawset(args.raw / "valid", channels=args.audio_channels)
    else:
        if not args.metadata.is_file() and args.rank == 0:
            build_musdb_metadata(args.metadata, args.musdb, args.workers)
        if args.world_size > 1:
            distributed.barrier()
        metadata = json.load(open(args.metadata))
        duration = Fraction(samples + args.data_stride, args.samplerate)
        stride = Fraction(args.data_stride, args.samplerate)
        train_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="train"),
                             metadata,
                             duration=duration,
                             stride=stride,
                             samplerate=args.samplerate,
                             channels=args.audio_channels)
        valid_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="valid"),
                             metadata,
                             samplerate=args.samplerate,
                             channels=args.audio_channels)

    best_loss = float("inf")
    for epoch, metrics in enumerate(saved.metrics):
        print(f"Epoch {epoch:03d}: "
              f"train={metrics['train']:.8f} "
              f"valid={metrics['valid']:.8f} "
              f"best={metrics['best']:.4f} "
              f"duration={human_seconds(metrics['duration'])}")
        best_loss = metrics['best']

    if args.world_size > 1:
        dmodel = DistributedDataParallel(model,
                                         device_ids=[th.cuda.current_device()],
                                         output_device=th.cuda.current_device())
    else:
        dmodel = model

    for epoch in range(len(saved.metrics), args.epochs):
        begin = time.time()
        model.train()
        train_loss = train_model(epoch,
                                 train_set,
                                 dmodel,
                                 criterion,
                                 optimizer,
                                 augment,
                                 batch_size=args.batch_size,
                                 device=device,
                                 repeat=args.repeat,
                                 seed=args.seed,
                                 workers=args.workers,
                                 world_size=args.world_size)
        model.eval()
        valid_loss = validate_model(epoch,
                                    valid_set,
                                    model,
                                    criterion,
                                    device=device,
                                    rank=args.rank,
                                    split=args.split_valid,
                                    world_size=args.world_size)

        duration = time.time() - begin
        if valid_loss < best_loss:
            best_loss = valid_loss
            saved.best_state = {
                key: value.to("cpu").clone()
                for key, value in model.state_dict().items()
            }
        saved.metrics.append({
            "train": train_loss,
            "valid": valid_loss,
            "best": best_loss,
            "duration": duration
        })
        if args.rank == 0:
            json.dump(saved.metrics, open(metrics_path, "w"))

        saved.last_state = model.state_dict()
        saved.optimizer = optimizer.state_dict()
        if args.rank == 0 and not args.test:
            th.save(saved, checkpoint_tmp)
            checkpoint_tmp.rename(checkpoint)

        print(f"Epoch {epoch:03d}: "
              f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} "
              f"duration={human_seconds(duration)}")

    del dmodel
    model.load_state_dict(saved.best_state)
    if args.eval_cpu:
        device = "cpu"
        model.to(device)
    model.eval()
    evaluate(model,
             args.musdb,
             eval_folder,
             rank=args.rank,
             world_size=args.world_size,
             device=device,
             save=args.save,
             split=args.split_valid,
             shifts=args.shifts,
             workers=args.eval_workers)
    model.to("cpu")
    save_model(model, args.models / f"{name}.th")
    if args.rank == 0:
        print("done")
        done.write_text("done")


if __name__ == "__main__":
    main()