File size: 17,434 Bytes
fa4dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
import typing as tp

import julius
import torch
from torch import nn
from torch.nn import functional as F

from .states import capture_init
from .utils import center_trim, unfold


class BLSTM(nn.Module):
    """
    BiLSTM with same hidden units as input dim.
    If `max_steps` is not None, input will be splitting in overlapping
    chunks and the LSTM applied separately on each chunk.
    """
    def __init__(self, dim, layers=1, max_steps=None, skip=False):
        super().__init__()
        assert max_steps is None or max_steps % 4 == 0
        self.max_steps = max_steps
        self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
        self.linear = nn.Linear(2 * dim, dim)
        self.skip = skip

    def forward(self, x):
        B, C, T = x.shape
        y = x
        framed = False
        if self.max_steps is not None and T > self.max_steps:
            width = self.max_steps
            stride = width // 2
            frames = unfold(x, width, stride)
            nframes = frames.shape[2]
            framed = True
            x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)

        x = x.permute(2, 0, 1)

        x = self.lstm(x)[0]
        x = self.linear(x)
        x = x.permute(1, 2, 0)
        if framed:
            out = []
            frames = x.reshape(B, -1, C, width)
            limit = stride // 2
            for k in range(nframes):
                if k == 0:
                    out.append(frames[:, k, :, :-limit])
                elif k == nframes - 1:
                    out.append(frames[:, k, :, limit:])
                else:
                    out.append(frames[:, k, :, limit:-limit])
            out = torch.cat(out, -1)
            out = out[..., :T]
            x = out
        if self.skip:
            x = x + y
        return x


def rescale_conv(conv, reference):
    """Rescale initial weight scale. It is unclear why it helps but it certainly does.
    """
    std = conv.weight.std().detach()
    scale = (std / reference)**0.5
    conv.weight.data /= scale
    if conv.bias is not None:
        conv.bias.data /= scale


def rescale_module(module, reference):
    for sub in module.modules():
        if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)):
            rescale_conv(sub, reference)


class LayerScale(nn.Module):
    """Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
    This rescales diagonaly residual outputs close to 0 initially, then learnt.
    """
    def __init__(self, channels: int, init: float = 0):
        super().__init__()
        self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
        self.scale.data[:] = init

    def forward(self, x):
        return self.scale[:, None] * x


class DConv(nn.Module):
    """
    New residual branches in each encoder layer.
    This alternates dilated convolutions, potentially with LSTMs and attention.
    Also before entering each residual branch, dimension is projected on a smaller subspace,
    e.g. of dim `channels // compress`.
    """
    def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4,
                 norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True,
                 kernel=3, dilate=True):
        """
        Args:
            channels: input/output channels for residual branch.
            compress: amount of channel compression inside the branch.
            depth: number of layers in the residual branch. Each layer has its own
                projection, and potentially LSTM and attention.
            init: initial scale for LayerNorm.
            norm: use GroupNorm.
            attn: use LocalAttention.
            heads: number of heads for the LocalAttention.
            ndecay: number of decay controls in the LocalAttention.
            lstm: use LSTM.
            gelu: Use GELU activation.
            kernel: kernel size for the (dilated) convolutions.
            dilate: if true, use dilation, increasing with the depth.
        """

        super().__init__()
        assert kernel % 2 == 1
        self.channels = channels
        self.compress = compress
        self.depth = abs(depth)
        dilate = depth > 0

        norm_fn: tp.Callable[[int], nn.Module]
        norm_fn = lambda d: nn.Identity()  # noqa
        if norm:
            norm_fn = lambda d: nn.GroupNorm(1, d)  # noqa

        hidden = int(channels / compress)

        act: tp.Type[nn.Module]
        if gelu:
            act = nn.GELU
        else:
            act = nn.ReLU

        self.layers = nn.ModuleList([])
        for d in range(self.depth):
            dilation = 2 ** d if dilate else 1
            padding = dilation * (kernel // 2)
            mods = [
                nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
                norm_fn(hidden), act(),
                nn.Conv1d(hidden, 2 * channels, 1),
                norm_fn(2 * channels), nn.GLU(1),
                LayerScale(channels, init),
            ]
            if attn:
                mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
            if lstm:
                mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
            layer = nn.Sequential(*mods)
            self.layers.append(layer)

    def forward(self, x):
        for layer in self.layers:
            x = x + layer(x)
        return x


class LocalState(nn.Module):
    """Local state allows to have attention based only on data (no positional embedding),
    but while setting a constraint on the time window (e.g. decaying penalty term).

    Also a failed experiments with trying to provide some frequency based attention.
    """
    def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
        super().__init__()
        assert channels % heads == 0, (channels, heads)
        self.heads = heads
        self.nfreqs = nfreqs
        self.ndecay = ndecay
        self.content = nn.Conv1d(channels, channels, 1)
        self.query = nn.Conv1d(channels, channels, 1)
        self.key = nn.Conv1d(channels, channels, 1)
        if nfreqs:
            self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
        if ndecay:
            self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
            # Initialize decay close to zero (there is a sigmoid), for maximum initial window.
            self.query_decay.weight.data *= 0.01
            assert self.query_decay.bias is not None  # stupid type checker
            self.query_decay.bias.data[:] = -2
        self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)

    def forward(self, x):
        B, C, T = x.shape
        heads = self.heads
        indexes = torch.arange(T, device=x.device, dtype=x.dtype)
        # left index are keys, right index are queries
        delta = indexes[:, None] - indexes[None, :]

        queries = self.query(x).view(B, heads, -1, T)
        keys = self.key(x).view(B, heads, -1, T)
        # t are keys, s are queries
        dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
        dots /= keys.shape[2]**0.5
        if self.nfreqs:
            periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
            freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
            freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5
            dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
        if self.ndecay:
            decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
            decay_q = self.query_decay(x).view(B, heads, -1, T)
            decay_q = torch.sigmoid(decay_q) / 2
            decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
            dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)

        # Kill self reference.
        dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
        weights = torch.softmax(dots, dim=2)

        content = self.content(x).view(B, heads, -1, T)
        result = torch.einsum("bhts,bhct->bhcs", weights, content)
        if self.nfreqs:
            time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
            result = torch.cat([result, time_sig], 2)
        result = result.reshape(B, -1, T)
        return x + self.proj(result)


class Demucs(nn.Module):
    @capture_init
    def __init__(self,
                 sources,
                 # Channels
                 audio_channels=2,
                 channels=64,
                 growth=2.,
                 # Main structure
                 depth=6,
                 rewrite=True,
                 lstm_layers=0,
                 # Convolutions
                 kernel_size=8,
                 stride=4,
                 context=1,
                 # Activations
                 gelu=True,
                 glu=True,
                 # Normalization
                 norm_starts=4,
                 norm_groups=4,
                 # DConv residual branch
                 dconv_mode=1,
                 dconv_depth=2,
                 dconv_comp=4,
                 dconv_attn=4,
                 dconv_lstm=4,
                 dconv_init=1e-4,
                 # Pre/post processing
                 normalize=True,
                 resample=True,
                 # Weight init
                 rescale=0.1,
                 # Metadata
                 samplerate=44100,
                 segment=4 * 10):
        """
        Args:
            sources (list[str]): list of source names
            audio_channels (int): stereo or mono
            channels (int): first convolution channels
            depth (int): number of encoder/decoder layers
            growth (float): multiply (resp divide) number of channels by that
                for each layer of the encoder (resp decoder)
            depth (int): number of layers in the encoder and in the decoder.
            rewrite (bool): add 1x1 convolution to each layer.
            lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
                by default, as this is now replaced by the smaller and faster small LSTMs
                in the DConv branches.
            kernel_size (int): kernel size for convolutions
            stride (int): stride for convolutions
            context (int): kernel size of the convolution in the
                decoder before the transposed convolution. If > 1,
                will provide some context from neighboring time steps.
            gelu: use GELU activation function.
            glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
            norm_starts: layer at which group norm starts being used.
                decoder layers are numbered in reverse order.
            norm_groups: number of groups for group norm.
            dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
            dconv_depth: depth of residual DConv branch.
            dconv_comp: compression of DConv branch.
            dconv_attn: adds attention layers in DConv branch starting at this layer.
            dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
            dconv_init: initial scale for the DConv branch LayerScale.
            normalize (bool): normalizes the input audio on the fly, and scales back
                the output by the same amount.
            resample (bool): upsample x2 the input and downsample /2 the output.
            rescale (int): rescale initial weights of convolutions
                to get their standard deviation closer to `rescale`.
            samplerate (int): stored as meta information for easing
                future evaluations of the model.
            segment (float): duration of the chunks of audio to ideally evaluate the model on.
                This is used by `demucs.apply.apply_model`.
        """

        super().__init__()
        self.audio_channels = audio_channels
        self.sources = sources
        self.kernel_size = kernel_size
        self.context = context
        self.stride = stride
        self.depth = depth
        self.resample = resample
        self.channels = channels
        self.normalize = normalize
        self.samplerate = samplerate
        self.segment = segment
        self.encoder = nn.ModuleList()
        self.decoder = nn.ModuleList()
        self.skip_scales = nn.ModuleList()

        if glu:
            activation = nn.GLU(dim=1)
            ch_scale = 2
        else:
            activation = nn.ReLU()
            ch_scale = 1
        if gelu:
            act2 = nn.GELU
        else:
            act2 = nn.ReLU

        in_channels = audio_channels
        padding = 0
        for index in range(depth):
            norm_fn = lambda d: nn.Identity()  # noqa
            if index >= norm_starts:
                norm_fn = lambda d: nn.GroupNorm(norm_groups, d)  # noqa

            encode = []
            encode += [
                nn.Conv1d(in_channels, channels, kernel_size, stride),
                norm_fn(channels),
                act2(),
            ]
            attn = index >= dconv_attn
            lstm = index >= dconv_lstm
            if dconv_mode & 1:
                encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
                                 compress=dconv_comp, attn=attn, lstm=lstm)]
            if rewrite:
                encode += [
                    nn.Conv1d(channels, ch_scale * channels, 1),
                    norm_fn(ch_scale * channels), activation]
            self.encoder.append(nn.Sequential(*encode))

            decode = []
            if index > 0:
                out_channels = in_channels
            else:
                out_channels = len(self.sources) * audio_channels
            if rewrite:
                decode += [
                    nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
                    norm_fn(ch_scale * channels), activation]
            if dconv_mode & 2:
                decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
                                 compress=dconv_comp, attn=attn, lstm=lstm)]
            decode += [nn.ConvTranspose1d(channels, out_channels,
                       kernel_size, stride, padding=padding)]
            if index > 0:
                decode += [norm_fn(out_channels), act2()]
            self.decoder.insert(0, nn.Sequential(*decode))
            in_channels = channels
            channels = int(growth * channels)

        channels = in_channels
        if lstm_layers:
            self.lstm = BLSTM(channels, lstm_layers)
        else:
            self.lstm = None

        if rescale:
            rescale_module(self, reference=rescale)

    def valid_length(self, length):
        """
        Return the nearest valid length to use with the model so that
        there is no time steps left over in a convolution, e.g. for all
        layers, size of the input - kernel_size % stride = 0.

        Note that input are automatically padded if necessary to ensure that the output
        has the same length as the input.
        """
        if self.resample:
            length *= 2

        for _ in range(self.depth):
            length = math.ceil((length - self.kernel_size) / self.stride) + 1
            length = max(1, length)

        for idx in range(self.depth):
            length = (length - 1) * self.stride + self.kernel_size

        if self.resample:
            length = math.ceil(length / 2)
        return int(length)

    def forward(self, mix):
        x = mix
        length = x.shape[-1]

        if self.normalize:
            mono = mix.mean(dim=1, keepdim=True)
            mean = mono.mean(dim=-1, keepdim=True)
            std = mono.std(dim=-1, keepdim=True)
            x = (x - mean) / (1e-5 + std)
        else:
            mean = 0
            std = 1

        delta = self.valid_length(length) - length
        x = F.pad(x, (delta // 2, delta - delta // 2))

        if self.resample:
            x = julius.resample_frac(x, 1, 2)

        saved = []
        for encode in self.encoder:
            x = encode(x)
            saved.append(x)

        if self.lstm:
            x = self.lstm(x)

        for decode in self.decoder:
            skip = saved.pop(-1)
            skip = center_trim(skip, x)
            x = decode(x + skip)

        if self.resample:
            x = julius.resample_frac(x, 2, 1)
        x = x * std + mean
        x = center_trim(x, length)
        x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
        return x

    def load_state_dict(self, state, strict=True):
        # fix a mismatch with previous generation Demucs models.
        for idx in range(self.depth):
            for a in ['encoder', 'decoder']:
                for b in ['bias', 'weight']:
                    new = f'{a}.{idx}.3.{b}'
                    old = f'{a}.{idx}.2.{b}'
                    if old in state and new not in state:
                        state[new] = state.pop(old)
        super().load_state_dict(state, strict=strict)