File size: 30,019 Bytes
fa4dd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
This code contains the spectrogram and Hybrid version of Demucs.
"""
from copy import deepcopy
import math
import typing as tp
import torch
from torch import nn
from torch.nn import functional as F
from .filtering import wiener
from .demucs import DConv, rescale_module
from .states import capture_init
from .spec import spectro, ispectro
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen."""
x0 = x
length = x.shape[-1]
padding_left, padding_right = paddings
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
if length <= max_pad:
extra_pad = max_pad - length + 1
extra_pad_right = min(padding_right, extra_pad)
extra_pad_left = extra_pad - extra_pad_right
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
x = F.pad(x, (extra_pad_left, extra_pad_right))
out = F.pad(x, paddings, mode, value)
assert out.shape[-1] == length + padding_left + padding_right
assert (out[..., padding_left: padding_left + length] == x0).all()
return out
class ScaledEmbedding(nn.Module):
"""
Boost learning rate for embeddings (with `scale`).
Also, can make embeddings continuous with `smooth`.
"""
def __init__(self, num_embeddings: int, embedding_dim: int,
scale: float = 10., smooth=False):
super().__init__()
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
if smooth:
weight = torch.cumsum(self.embedding.weight.data, dim=0)
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that.
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
self.embedding.weight.data[:] = weight
self.embedding.weight.data /= scale
self.scale = scale
@property
def weight(self):
return self.embedding.weight * self.scale
def forward(self, x):
out = self.embedding(x) * self.scale
return out
class HEncLayer(nn.Module):
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True,
rewrite=True):
"""Encoder layer. This used both by the time and the frequency branch.
Args:
chin: number of input channels.
chout: number of output channels.
norm_groups: number of groups for group norm.
empty: used to make a layer with just the first conv. this is used
before merging the time and freq. branches.
freq: this is acting on frequencies.
dconv: insert DConv residual branches.
norm: use GroupNorm.
context: context size for the 1x1 conv.
dconv_kw: list of kwargs for the DConv class.
pad: pad the input. Padding is done so that the output size is
always the input size / stride.
rewrite: add 1x1 conv at the end of the layer.
"""
super().__init__()
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
if pad:
pad = kernel_size // 4
else:
pad = 0
klass = nn.Conv1d
self.freq = freq
self.kernel_size = kernel_size
self.stride = stride
self.empty = empty
self.norm = norm
self.pad = pad
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
pad = [pad, 0]
klass = nn.Conv2d
self.conv = klass(chin, chout, kernel_size, stride, pad)
if self.empty:
return
self.norm1 = norm_fn(chout)
self.rewrite = None
if rewrite:
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
self.norm2 = norm_fn(2 * chout)
self.dconv = None
if dconv:
self.dconv = DConv(chout, **dconv_kw)
def forward(self, x, inject=None):
"""
`inject` is used to inject the result from the time branch into the frequency branch,
when both have the same stride.
"""
if not self.freq and x.dim() == 4:
B, C, Fr, T = x.shape
x = x.view(B, -1, T)
if not self.freq:
le = x.shape[-1]
if not le % self.stride == 0:
x = F.pad(x, (0, self.stride - (le % self.stride)))
y = self.conv(x)
if self.empty:
return y
if inject is not None:
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
if inject.dim() == 3 and y.dim() == 4:
inject = inject[:, :, None]
y = y + inject
y = F.gelu(self.norm1(y))
if self.dconv:
if self.freq:
B, C, Fr, T = y.shape
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
y = self.dconv(y)
if self.freq:
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
if self.rewrite:
z = self.norm2(self.rewrite(y))
z = F.glu(z, dim=1)
else:
z = y
return z
class MultiWrap(nn.Module):
"""
Takes one layer and replicate it N times. each replica will act
on a frequency band. All is done so that if the N replica have the same weights,
then this is exactly equivalent to applying the original module on all frequencies.
This is a bit over-engineered to avoid edge artifacts when splitting
the frequency bands, but it is possible the naive implementation would work as well...
"""
def __init__(self, layer, split_ratios):
"""
Args:
layer: module to clone, must be either HEncLayer or HDecLayer.
split_ratios: list of float indicating which ratio to keep for each band.
"""
super().__init__()
self.split_ratios = split_ratios
self.layers = nn.ModuleList()
self.conv = isinstance(layer, HEncLayer)
assert not layer.norm
assert layer.freq
assert layer.pad
if not self.conv:
assert not layer.context_freq
for k in range(len(split_ratios) + 1):
lay = deepcopy(layer)
if self.conv:
lay.conv.padding = (0, 0)
else:
lay.pad = False
for m in lay.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
self.layers.append(lay)
def forward(self, x, skip=None, length=None):
B, C, Fr, T = x.shape
ratios = list(self.split_ratios) + [1]
start = 0
outs = []
for ratio, layer in zip(ratios, self.layers):
if self.conv:
pad = layer.kernel_size // 4
if ratio == 1:
limit = Fr
frames = -1
else:
limit = int(round(Fr * ratio))
le = limit - start
if start == 0:
le += pad
frames = round((le - layer.kernel_size) / layer.stride + 1)
limit = start + (frames - 1) * layer.stride + layer.kernel_size
if start == 0:
limit -= pad
assert limit - start > 0, (limit, start)
assert limit <= Fr, (limit, Fr)
y = x[:, :, start:limit, :]
if start == 0:
y = F.pad(y, (0, 0, pad, 0))
if ratio == 1:
y = F.pad(y, (0, 0, 0, pad))
outs.append(layer(y))
start = limit - layer.kernel_size + layer.stride
else:
if ratio == 1:
limit = Fr
else:
limit = int(round(Fr * ratio))
last = layer.last
layer.last = True
y = x[:, :, start:limit]
s = skip[:, :, start:limit]
out, _ = layer(y, s, None)
if outs:
outs[-1][:, :, -layer.stride:] += (
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1))
out = out[:, :, layer.stride:]
if ratio == 1:
out = out[:, :, :-layer.stride // 2, :]
if start == 0:
out = out[:, :, layer.stride // 2:, :]
outs.append(out)
layer.last = last
start = limit
out = torch.cat(outs, dim=2)
if not self.conv and not last:
out = F.gelu(out)
if self.conv:
return out
else:
return out, None
class HDecLayer(nn.Module):
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
context_freq=True, rewrite=True):
"""
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
"""
super().__init__()
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
if pad:
pad = kernel_size // 4
else:
pad = 0
self.pad = pad
self.last = last
self.freq = freq
self.chin = chin
self.empty = empty
self.stride = stride
self.kernel_size = kernel_size
self.norm = norm
self.context_freq = context_freq
klass = nn.Conv1d
klass_tr = nn.ConvTranspose1d
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
klass = nn.Conv2d
klass_tr = nn.ConvTranspose2d
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
self.norm2 = norm_fn(chout)
if self.empty:
return
self.rewrite = None
if rewrite:
if context_freq:
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
else:
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
[0, context])
self.norm1 = norm_fn(2 * chin)
self.dconv = None
if dconv:
self.dconv = DConv(chin, **dconv_kw)
def forward(self, x, skip, length):
if self.freq and x.dim() == 3:
B, C, T = x.shape
x = x.view(B, self.chin, -1, T)
if not self.empty:
x = x + skip
if self.rewrite:
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
else:
y = x
if self.dconv:
if self.freq:
B, C, Fr, T = y.shape
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
y = self.dconv(y)
if self.freq:
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
else:
y = x
assert skip is None
z = self.norm2(self.conv_tr(y))
if self.freq:
if self.pad:
z = z[..., self.pad:-self.pad, :]
else:
z = z[..., self.pad:self.pad + length]
assert z.shape[-1] == length, (z.shape[-1], length)
if not self.last:
z = F.gelu(z)
return z, y
class HDemucs(nn.Module):
"""
Spectrogram and hybrid Demucs model.
The spectrogram model has the same structure as Demucs, except the first few layers are over the
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
Frequency layers can still access information across time steps thanks to the DConv residual.
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
as the frequency branch and then the two are combined. The opposite happens in the decoder.
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
Open Unmix implementation [Stoter et al. 2019].
The loss is always on the temporal domain, by backpropagating through the above
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
contribution, without changing the one from the waveform, which will lead to worse performance.
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
CaC on the other hand provides similar performance for hybrid, and works naturally with
hybrid models.
This model also uses frequency embeddings are used to improve efficiency on convolutions
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
"""
@capture_init
def __init__(self,
sources,
# Channels
audio_channels=2,
channels=48,
channels_time=None,
growth=2,
# STFT
nfft=4096,
wiener_iters=0,
end_iters=0,
wiener_residual=False,
cac=True,
# Main structure
depth=6,
rewrite=True,
hybrid=True,
hybrid_old=False,
# Frequency branch
multi_freqs=None,
multi_freqs_depth=2,
freq_emb=0.2,
emb_scale=10,
emb_smooth=True,
# Convolutions
kernel_size=8,
time_stride=2,
stride=4,
context=1,
context_enc=0,
# Normalization
norm_starts=4,
norm_groups=4,
# DConv residual branch
dconv_mode=1,
dconv_depth=2,
dconv_comp=4,
dconv_attn=4,
dconv_lstm=4,
dconv_init=1e-4,
# Weight init
rescale=0.1,
# Metadata
samplerate=44100,
segment=4 * 10):
"""
Args:
sources (list[str]): list of source names.
audio_channels (int): input/output audio channels.
channels (int): initial number of hidden channels.
channels_time: if not None, use a different `channels` value for the time branch.
growth: increase the number of hidden channels by this factor at each layer.
nfft: number of fft bins. Note that changing this require careful computation of
various shape parameters and will not work out of the box for hybrid models.
wiener_iters: when using Wiener filtering, number of iterations at test time.
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
wiener_residual: add residual source before wiener filtering.
cac: uses complex as channels, i.e. complex numbers are 2 channels each
in input and output. no further processing is done before ISTFT.
depth (int): number of layers in the encoder and in the decoder.
rewrite (bool): add 1x1 convolution to each layer.
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
hybrid_old: some models trained for MDX had a padding bug. This replicates
this bug to avoid retraining them.
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
layers will be wrapped.
freq_emb: add frequency embedding after the first frequency layer if > 0,
the actual value controls the weight of the embedding.
emb_scale: equivalent to scaling the embedding learning rate
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
kernel_size: kernel_size for encoder and decoder layers.
stride: stride for encoder and decoder layers.
time_stride: stride for the final time layer, after the merge.
context: context for 1x1 conv in the decoder.
context_enc: context for 1x1 conv in the encoder.
norm_starts: layer at which group norm starts being used.
decoder layers are numbered in reverse order.
norm_groups: number of groups for group norm.
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
dconv_depth: depth of residual DConv branch.
dconv_comp: compression of DConv branch.
dconv_attn: adds attention layers in DConv branch starting at this layer.
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
dconv_init: initial scale for the DConv branch LayerScale.
rescale: weight recaling trick
"""
super().__init__()
self.cac = cac
self.wiener_residual = wiener_residual
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.channels = channels
self.samplerate = samplerate
self.segment = segment
self.nfft = nfft
self.hop_length = nfft // 4
self.wiener_iters = wiener_iters
self.end_iters = end_iters
self.freq_emb = None
self.hybrid = hybrid
self.hybrid_old = hybrid_old
if hybrid_old:
assert hybrid, "hybrid_old must come with hybrid=True"
if hybrid:
assert wiener_iters == end_iters
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
if hybrid:
self.tencoder = nn.ModuleList()
self.tdecoder = nn.ModuleList()
chin = audio_channels
chin_z = chin # number of channels for the freq branch
if self.cac:
chin_z *= 2
chout = channels_time or channels
chout_z = channels
freqs = nfft // 2
for index in range(depth):
lstm = index >= dconv_lstm
attn = index >= dconv_attn
norm = index >= norm_starts
freq = freqs > 1
stri = stride
ker = kernel_size
if not freq:
assert freqs == 1
ker = time_stride * 2
stri = time_stride
pad = True
last_freq = False
if freq and freqs <= kernel_size:
ker = freqs
pad = False
last_freq = True
kw = {
'kernel_size': ker,
'stride': stri,
'freq': freq,
'pad': pad,
'norm': norm,
'rewrite': rewrite,
'norm_groups': norm_groups,
'dconv_kw': {
'lstm': lstm,
'attn': attn,
'depth': dconv_depth,
'compress': dconv_comp,
'init': dconv_init,
'gelu': True,
}
}
kwt = dict(kw)
kwt['freq'] = 0
kwt['kernel_size'] = kernel_size
kwt['stride'] = stride
kwt['pad'] = True
kw_dec = dict(kw)
multi = False
if multi_freqs and index < multi_freqs_depth:
multi = True
kw_dec['context_freq'] = False
if last_freq:
chout_z = max(chout, chout_z)
chout = chout_z
enc = HEncLayer(chin_z, chout_z,
dconv=dconv_mode & 1, context=context_enc, **kw)
if hybrid and freq:
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc,
empty=last_freq, **kwt)
self.tencoder.append(tenc)
if multi:
enc = MultiWrap(enc, multi_freqs)
self.encoder.append(enc)
if index == 0:
chin = self.audio_channels * len(self.sources)
chin_z = chin
if self.cac:
chin_z *= 2
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2,
last=index == 0, context=context, **kw_dec)
if multi:
dec = MultiWrap(dec, multi_freqs)
if hybrid and freq:
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq,
last=index == 0, context=context, **kwt)
self.tdecoder.insert(0, tdec)
self.decoder.insert(0, dec)
chin = chout
chin_z = chout_z
chout = int(growth * chout)
chout_z = int(growth * chout_z)
if freq:
if freqs <= kernel_size:
freqs = 1
else:
freqs //= stride
if index == 0 and freq_emb:
self.freq_emb = ScaledEmbedding(
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
self.freq_emb_scale = freq_emb
if rescale:
rescale_module(self, reference=rescale)
def _spec(self, x):
hl = self.hop_length
nfft = self.nfft
x0 = x # noqa
if self.hybrid:
# We re-pad the signal in order to keep the property
# that the size of the output is exactly the size of the input
# divided by the stride (here hop_length), when divisible.
# This is achieved by padding by 1/4th of the kernel size (here nfft).
# which is not supported by torch.stft.
# Having all convolution operations follow this convention allow to easily
# align the time and frequency branches later on.
assert hl == nfft // 4
le = int(math.ceil(x.shape[-1] / hl))
pad = hl // 2 * 3
if not self.hybrid_old:
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect')
else:
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]))
z = spectro(x, nfft, hl)[..., :-1, :]
if self.hybrid:
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
z = z[..., 2:2+le]
return z
def _ispec(self, z, length=None, scale=0):
hl = self.hop_length // (4 ** scale)
z = F.pad(z, (0, 0, 0, 1))
if self.hybrid:
z = F.pad(z, (2, 2))
pad = hl // 2 * 3
if not self.hybrid_old:
le = hl * int(math.ceil(length / hl)) + 2 * pad
else:
le = hl * int(math.ceil(length / hl))
x = ispectro(z, hl, length=le)
if not self.hybrid_old:
x = x[..., pad:pad + length]
else:
x = x[..., :length]
else:
x = ispectro(z, hl, length)
return x
def _magnitude(self, z):
# return the magnitude of the spectrogram, except when cac is True,
# in which case we just move the complex dimension to the channel one.
if self.cac:
B, C, Fr, T = z.shape
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
m = m.reshape(B, C * 2, Fr, T)
else:
m = z.abs()
return m
def _mask(self, z, m):
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
niters = self.wiener_iters
if self.cac:
B, S, C, Fr, T = m.shape
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
out = torch.view_as_complex(out.contiguous())
return out
if self.training:
niters = self.end_iters
if niters < 0:
z = z[:, None]
return z / (1e-8 + z.abs()) * m
else:
return self._wiener(m, z, niters)
def _wiener(self, mag_out, mix_stft, niters):
# apply wiener filtering from OpenUnmix.
init = mix_stft.dtype
wiener_win_len = 300
residual = self.wiener_residual
B, S, C, Fq, T = mag_out.shape
mag_out = mag_out.permute(0, 4, 3, 2, 1)
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
outs = []
for sample in range(B):
pos = 0
out = []
for pos in range(0, T, wiener_win_len):
frame = slice(pos, pos + wiener_win_len)
z_out = wiener(
mag_out[sample, frame], mix_stft[sample, frame], niters,
residual=residual)
out.append(z_out.transpose(-1, -2))
outs.append(torch.cat(out, dim=0))
out = torch.view_as_complex(torch.stack(outs, 0))
out = out.permute(0, 4, 3, 2, 1).contiguous()
if residual:
out = out[:, :-1]
assert list(out.shape) == [B, S, C, Fq, T]
return out.to(init)
def forward(self, mix):
x = mix
length = x.shape[-1]
z = self._spec(mix)
mag = self._magnitude(z)
x = mag
B, C, Fq, T = x.shape
# unlike previous Demucs, we always normalize because it is easier.
mean = x.mean(dim=(1, 2, 3), keepdim=True)
std = x.std(dim=(1, 2, 3), keepdim=True)
x = (x - mean) / (1e-5 + std)
# x will be the freq. branch input.
if self.hybrid:
# Prepare the time branch input.
xt = mix
meant = xt.mean(dim=(1, 2), keepdim=True)
stdt = xt.std(dim=(1, 2), keepdim=True)
xt = (xt - meant) / (1e-5 + stdt)
# okay, this is a giant mess I know...
saved = [] # skip connections, freq.
saved_t = [] # skip connections, time.
lengths = [] # saved lengths to properly remove padding, freq branch.
lengths_t = [] # saved lengths for time branch.
for idx, encode in enumerate(self.encoder):
lengths.append(x.shape[-1])
inject = None
if self.hybrid and idx < len(self.tencoder):
# we have not yet merged branches.
lengths_t.append(xt.shape[-1])
tenc = self.tencoder[idx]
xt = tenc(xt)
if not tenc.empty:
# save for skip connection
saved_t.append(xt)
else:
# tenc contains just the first conv., so that now time and freq.
# branches have the same shape and can be merged.
inject = xt
x = encode(x, inject)
if idx == 0 and self.freq_emb is not None:
# add frequency embedding to allow for non equivariant convolutions
# over the frequency axis.
frs = torch.arange(x.shape[-2], device=x.device)
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
x = x + self.freq_emb_scale * emb
saved.append(x)
x = torch.zeros_like(x)
if self.hybrid:
xt = torch.zeros_like(x)
# initialize everything to zero (signal will go through u-net skips).
for idx, decode in enumerate(self.decoder):
skip = saved.pop(-1)
x, pre = decode(x, skip, lengths.pop(-1))
# `pre` contains the output just before final transposed convolution,
# which is used when the freq. and time branch separate.
if self.hybrid:
offset = self.depth - len(self.tdecoder)
if self.hybrid and idx >= offset:
tdec = self.tdecoder[idx - offset]
length_t = lengths_t.pop(-1)
if tdec.empty:
assert pre.shape[2] == 1, pre.shape
pre = pre[:, :, 0]
xt, _ = tdec(pre, None, length_t)
else:
skip = saved_t.pop(-1)
xt, _ = tdec(xt, skip, length_t)
# Let's make sure we used all stored skip connections.
assert len(saved) == 0
assert len(lengths_t) == 0
assert len(saved_t) == 0
S = len(self.sources)
x = x.view(B, S, -1, Fq, T)
x = x * std[:, None] + mean[:, None]
zout = self._mask(z, x)
x = self._ispec(zout, length)
if self.hybrid:
xt = xt.view(B, S, -1, length)
xt = xt * stdt[:, None] + meant[:, None]
x = xt + x
return x
|