File size: 7,428 Bytes
fa4dd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch as th
from torch import nn
from .utils import capture_init, center_trim
class BLSTM(nn.Module):
def __init__(self, dim, layers=1):
super().__init__()
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
self.linear = nn.Linear(2 * dim, dim)
def forward(self, x):
x = x.permute(2, 0, 1)
x = self.lstm(x)[0]
x = self.linear(x)
x = x.permute(1, 2, 0)
return x
def rescale_conv(conv, reference):
std = conv.weight.std().detach()
scale = (std / reference)**0.5
conv.weight.data /= scale
if conv.bias is not None:
conv.bias.data /= scale
def rescale_module(module, reference):
for sub in module.modules():
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
rescale_conv(sub, reference)
def upsample(x, stride):
"""
Linear upsampling, the output will be `stride` times longer.
"""
batch, channels, time = x.size()
weight = th.arange(stride, device=x.device, dtype=th.float) / stride
x = x.view(batch, channels, time, 1)
out = x[..., :-1, :] * (1 - weight) + x[..., 1:, :] * weight
return out.reshape(batch, channels, -1)
def downsample(x, stride):
"""
Downsample x by decimation.
"""
return x[:, :, ::stride]
class Demucs(nn.Module):
@capture_init
def __init__(self,
sources=4,
audio_channels=2,
channels=64,
depth=6,
rewrite=True,
glu=True,
upsample=False,
rescale=0.1,
kernel_size=8,
stride=4,
growth=2.,
lstm_layers=2,
context=3,
samplerate=44100):
"""
Args:
sources (int): number of sources to separate
audio_channels (int): stereo or mono
channels (int): first convolution channels
depth (int): number of encoder/decoder layers
rewrite (bool): add 1x1 convolution to each encoder layer
and a convolution to each decoder layer.
For the decoder layer, `context` gives the kernel size.
glu (bool): use glu instead of ReLU
upsample (bool): use linear upsampling with convolutions
Wave-U-Net style, instead of transposed convolutions
rescale (int): rescale initial weights of convolutions
to get their standard deviation closer to `rescale`
kernel_size (int): kernel size for convolutions
stride (int): stride for convolutions
growth (float): multiply (resp divide) number of channels by that
for each layer of the encoder (resp decoder)
lstm_layers (int): number of lstm layers, 0 = no lstm
context (int): kernel size of the convolution in the
decoder before the transposed convolution. If > 1,
will provide some context from neighboring time
steps.
"""
super().__init__()
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.upsample = upsample
self.channels = channels
self.samplerate = samplerate
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.final = None
if upsample:
self.final = nn.Conv1d(channels + audio_channels, sources * audio_channels, 1)
stride = 1
if glu:
activation = nn.GLU(dim=1)
ch_scale = 2
else:
activation = nn.ReLU()
ch_scale = 1
in_channels = audio_channels
for index in range(depth):
encode = []
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), nn.ReLU()]
if rewrite:
encode += [nn.Conv1d(channels, ch_scale * channels, 1), activation]
self.encoder.append(nn.Sequential(*encode))
decode = []
if index > 0:
out_channels = in_channels
else:
if upsample:
out_channels = channels
else:
out_channels = sources * audio_channels
if rewrite:
decode += [nn.Conv1d(channels, ch_scale * channels, context), activation]
if upsample:
decode += [
nn.Conv1d(channels, out_channels, kernel_size, stride=1),
]
else:
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride)]
if index > 0:
decode.append(nn.ReLU())
self.decoder.insert(0, nn.Sequential(*decode))
in_channels = channels
channels = int(growth * channels)
channels = in_channels
if lstm_layers:
self.lstm = BLSTM(channels, lstm_layers)
else:
self.lstm = None
if rescale:
rescale_module(self, reference=rescale)
def valid_length(self, length):
"""
Return the nearest valid length to use with the model so that
there is no time steps left over in a convolutions, e.g. for all
layers, size of the input - kernel_size % stride = 0.
If the mixture has a valid length, the estimated sources
will have exactly the same length when context = 1. If context > 1,
the two signals can be center trimmed to match.
For training, extracts should have a valid length.For evaluation
on full tracks we recommend passing `pad = True` to :method:`forward`.
"""
for _ in range(self.depth):
if self.upsample:
length = math.ceil(length / self.stride) + self.kernel_size - 1
else:
length = math.ceil((length - self.kernel_size) / self.stride) + 1
length = max(1, length)
length += self.context - 1
for _ in range(self.depth):
if self.upsample:
length = length * self.stride + self.kernel_size - 1
else:
length = (length - 1) * self.stride + self.kernel_size
return int(length)
def forward(self, mix):
x = mix
saved = [x]
for encode in self.encoder:
x = encode(x)
saved.append(x)
if self.upsample:
x = downsample(x, self.stride)
if self.lstm:
x = self.lstm(x)
for decode in self.decoder:
if self.upsample:
x = upsample(x, stride=self.stride)
skip = center_trim(saved.pop(-1), x)
x = x + skip
x = decode(x)
if self.final:
skip = center_trim(saved.pop(-1), x)
x = th.cat([x, skip], dim=1)
x = self.final(x)
x = x.view(x.size(0), self.sources, self.audio_channels, x.size(-1))
return x
|