File size: 27,256 Bytes
fa4dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# Copyright (c) 2019-present, Meta, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# First author is Simon Rouard.

import random
import typing as tp

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from einops import rearrange


def create_sin_embedding(
    length: int, dim: int, shift: int = 0, device="cpu", max_period=10000
):
    # We aim for TBC format
    assert dim % 2 == 0
    pos = shift + torch.arange(length, device=device).view(-1, 1, 1)
    half_dim = dim // 2
    adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
    phase = pos / (max_period ** (adim / (half_dim - 1)))
    return torch.cat(
        [
            torch.cos(phase),
            torch.sin(phase),
        ],
        dim=-1,
    )


def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000):
    """
    :param d_model: dimension of the model
    :param height: height of the positions
    :param width: width of the positions
    :return: d_model*height*width position matrix
    """
    if d_model % 4 != 0:
        raise ValueError(
            "Cannot use sin/cos positional encoding with "
            "odd dimension (got dim={:d})".format(d_model)
        )
    pe = torch.zeros(d_model, height, width)
    # Each dimension use half of d_model
    d_model = int(d_model / 2)
    div_term = torch.exp(
        torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model)
    )
    pos_w = torch.arange(0.0, width).unsqueeze(1)
    pos_h = torch.arange(0.0, height).unsqueeze(1)
    pe[0:d_model:2, :, :] = (
        torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
    )
    pe[1:d_model:2, :, :] = (
        torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
    )
    pe[d_model::2, :, :] = (
        torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
    )
    pe[d_model + 1:: 2, :, :] = (
        torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
    )

    return pe[None, :].to(device)


def create_sin_embedding_cape(
    length: int,
    dim: int,
    batch_size: int,
    mean_normalize: bool,
    augment: bool,  # True during training
    max_global_shift: float = 0.0,  # delta max
    max_local_shift: float = 0.0,  # epsilon max
    max_scale: float = 1.0,
    device: str = "cpu",
    max_period: float = 10000.0,
):
    # We aim for TBC format
    assert dim % 2 == 0
    pos = 1.0 * torch.arange(length).view(-1, 1, 1)  # (length, 1, 1)
    pos = pos.repeat(1, batch_size, 1)  # (length, batch_size, 1)
    if mean_normalize:
        pos -= torch.nanmean(pos, dim=0, keepdim=True)

    if augment:
        delta = np.random.uniform(
            -max_global_shift, +max_global_shift, size=[1, batch_size, 1]
        )
        delta_local = np.random.uniform(
            -max_local_shift, +max_local_shift, size=[length, batch_size, 1]
        )
        log_lambdas = np.random.uniform(
            -np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1]
        )
        pos = (pos + delta + delta_local) * np.exp(log_lambdas)

    pos = pos.to(device)

    half_dim = dim // 2
    adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
    phase = pos / (max_period ** (adim / (half_dim - 1)))
    return torch.cat(
        [
            torch.cos(phase),
            torch.sin(phase),
        ],
        dim=-1,
    ).float()


def get_causal_mask(length):
    pos = torch.arange(length)
    return pos > pos[:, None]


def get_elementary_mask(
    T1,
    T2,
    mask_type,
    sparse_attn_window,
    global_window,
    mask_random_seed,
    sparsity,
    device,
):
    """
    When the input of the Decoder has length T1 and the output T2
    The mask matrix has shape (T2, T1)
    """
    assert mask_type in ["diag", "jmask", "random", "global"]

    if mask_type == "global":
        mask = torch.zeros(T2, T1, dtype=torch.bool)
        mask[:, :global_window] = True
        line_window = int(global_window * T2 / T1)
        mask[:line_window, :] = True

    if mask_type == "diag":

        mask = torch.zeros(T2, T1, dtype=torch.bool)
        rows = torch.arange(T2)[:, None]
        cols = (
            (T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1))
            .long()
            .clamp(0, T1 - 1)
        )
        mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))

    elif mask_type == "jmask":
        mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool)
        rows = torch.arange(T2 + 2)[:, None]
        t = torch.arange(0, int((2 * T1) ** 0.5 + 1))
        t = (t * (t + 1) / 2).int()
        t = torch.cat([-t.flip(0)[:-1], t])
        cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1)
        mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
        mask = mask[1:-1, 1:-1]

    elif mask_type == "random":
        gene = torch.Generator(device=device)
        gene.manual_seed(mask_random_seed)
        mask = (
            torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1)
            > sparsity
        )

    mask = mask.to(device)
    return mask


def get_mask(
    T1,
    T2,
    mask_type,
    sparse_attn_window,
    global_window,
    mask_random_seed,
    sparsity,
    device,
):
    """
    Return a SparseCSRTensor mask that is a combination of elementary masks
    mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
    """
    from xformers.sparse import SparseCSRTensor
    # create a list
    mask_types = mask_type.split("_")

    all_masks = [
        get_elementary_mask(
            T1,
            T2,
            mask,
            sparse_attn_window,
            global_window,
            mask_random_seed,
            sparsity,
            device,
        )
        for mask in mask_types
    ]

    final_mask = torch.stack(all_masks).sum(axis=0) > 0

    return SparseCSRTensor.from_dense(final_mask[None])


class ScaledEmbedding(nn.Module):
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        scale: float = 1.0,
        boost: float = 3.0,
    ):
        super().__init__()
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.embedding.weight.data *= scale / boost
        self.boost = boost

    @property
    def weight(self):
        return self.embedding.weight * self.boost

    def forward(self, x):
        return self.embedding(x) * self.boost


class LayerScale(nn.Module):
    """Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
    This rescales diagonaly residual outputs close to 0 initially, then learnt.
    """

    def __init__(self, channels: int, init: float = 0, channel_last=False):
        """
        channel_last = False corresponds to (B, C, T) tensors
        channel_last = True corresponds to (T, B, C) tensors
        """
        super().__init__()
        self.channel_last = channel_last
        self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
        self.scale.data[:] = init

    def forward(self, x):
        if self.channel_last:
            return self.scale * x
        else:
            return self.scale[:, None] * x


class MyGroupNorm(nn.GroupNorm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, x):
        """
        x: (B, T, C)
        if num_groups=1: Normalisation on all T and C together for each B
        """
        x = x.transpose(1, 2)
        return super().forward(x).transpose(1, 2)


class MyTransformerEncoderLayer(nn.TransformerEncoderLayer):
    def __init__(
        self,
        d_model,
        nhead,
        dim_feedforward=2048,
        dropout=0.1,
        activation=F.relu,
        group_norm=0,
        norm_first=False,
        norm_out=False,
        layer_norm_eps=1e-5,
        layer_scale=False,
        init_values=1e-4,
        device=None,
        dtype=None,
        sparse=False,
        mask_type="diag",
        mask_random_seed=42,
        sparse_attn_window=500,
        global_window=50,
        auto_sparsity=False,
        sparsity=0.95,
        batch_first=False,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__(
            d_model=d_model,
            nhead=nhead,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            activation=activation,
            layer_norm_eps=layer_norm_eps,
            batch_first=batch_first,
            norm_first=norm_first,
            device=device,
            dtype=dtype,
        )
        self.sparse = sparse
        self.auto_sparsity = auto_sparsity
        if sparse:
            if not auto_sparsity:
                self.mask_type = mask_type
                self.sparse_attn_window = sparse_attn_window
                self.global_window = global_window
            self.sparsity = sparsity
        if group_norm:
            self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
            self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)

        self.norm_out = None
        if self.norm_first & norm_out:
            self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
        self.gamma_1 = (
            LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
        )
        self.gamma_2 = (
            LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
        )

        if sparse:
            self.self_attn = MultiheadAttention(
                d_model, nhead, dropout=dropout, batch_first=batch_first,
                auto_sparsity=sparsity if auto_sparsity else 0,
            )
            self.__setattr__("src_mask", torch.zeros(1, 1))
            self.mask_random_seed = mask_random_seed

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        """
        if batch_first = False, src shape is (T, B, C)
        the case where batch_first=True is not covered
        """
        device = src.device
        x = src
        T, B, C = x.shape
        if self.sparse and not self.auto_sparsity:
            assert src_mask is None
            src_mask = self.src_mask
            if src_mask.shape[-1] != T:
                src_mask = get_mask(
                    T,
                    T,
                    self.mask_type,
                    self.sparse_attn_window,
                    self.global_window,
                    self.mask_random_seed,
                    self.sparsity,
                    device,
                )
                self.__setattr__("src_mask", src_mask)

        if self.norm_first:
            x = x + self.gamma_1(
                self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
            )
            x = x + self.gamma_2(self._ff_block(self.norm2(x)))

            if self.norm_out:
                x = self.norm_out(x)
        else:
            x = self.norm1(
                x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask))
            )
            x = self.norm2(x + self.gamma_2(self._ff_block(x)))

        return x


class CrossTransformerEncoderLayer(nn.Module):
    def __init__(
        self,
        d_model: int,
        nhead: int,
        dim_feedforward: int = 2048,
        dropout: float = 0.1,
        activation=F.relu,
        layer_norm_eps: float = 1e-5,
        layer_scale: bool = False,
        init_values: float = 1e-4,
        norm_first: bool = False,
        group_norm: bool = False,
        norm_out: bool = False,
        sparse=False,
        mask_type="diag",
        mask_random_seed=42,
        sparse_attn_window=500,
        global_window=50,
        sparsity=0.95,
        auto_sparsity=None,
        device=None,
        dtype=None,
        batch_first=False,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.sparse = sparse
        self.auto_sparsity = auto_sparsity
        if sparse:
            if not auto_sparsity:
                self.mask_type = mask_type
                self.sparse_attn_window = sparse_attn_window
                self.global_window = global_window
            self.sparsity = sparsity

        self.cross_attn: nn.Module
        self.cross_attn = nn.MultiheadAttention(
            d_model, nhead, dropout=dropout, batch_first=batch_first)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)

        self.norm_first = norm_first
        self.norm1: nn.Module
        self.norm2: nn.Module
        self.norm3: nn.Module
        if group_norm:
            self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
            self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
            self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
        else:
            self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
            self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
            self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)

        self.norm_out = None
        if self.norm_first & norm_out:
            self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)

        self.gamma_1 = (
            LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
        )
        self.gamma_2 = (
            LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
        )

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        # Legacy string support for activation function.
        if isinstance(activation, str):
            self.activation = self._get_activation_fn(activation)
        else:
            self.activation = activation

        if sparse:
            self.cross_attn = MultiheadAttention(
                d_model, nhead, dropout=dropout, batch_first=batch_first,
                auto_sparsity=sparsity if auto_sparsity else 0)
            if not auto_sparsity:
                self.__setattr__("mask", torch.zeros(1, 1))
                self.mask_random_seed = mask_random_seed

    def forward(self, q, k, mask=None):
        """
        Args:
            q: tensor of shape (T, B, C)
            k: tensor of shape (S, B, C)
            mask: tensor of shape (T, S)

        """
        device = q.device
        T, B, C = q.shape
        S, B, C = k.shape
        if self.sparse and not self.auto_sparsity:
            assert mask is None
            mask = self.mask
            if mask.shape[-1] != S or mask.shape[-2] != T:
                mask = get_mask(
                    S,
                    T,
                    self.mask_type,
                    self.sparse_attn_window,
                    self.global_window,
                    self.mask_random_seed,
                    self.sparsity,
                    device,
                )
                self.__setattr__("mask", mask)

        if self.norm_first:
            x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask))
            x = x + self.gamma_2(self._ff_block(self.norm3(x)))
            if self.norm_out:
                x = self.norm_out(x)
        else:
            x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask)))
            x = self.norm2(x + self.gamma_2(self._ff_block(x)))

        return x

    # self-attention block
    def _ca_block(self, q, k, attn_mask=None):
        x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0]
        return self.dropout1(x)

    # feed forward block
    def _ff_block(self, x):
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout2(x)

    def _get_activation_fn(self, activation):
        if activation == "relu":
            return F.relu
        elif activation == "gelu":
            return F.gelu

        raise RuntimeError("activation should be relu/gelu, not {}".format(activation))


# ----------------- MULTI-BLOCKS MODELS: -----------------------


class CrossTransformerEncoder(nn.Module):
    def __init__(
        self,
        dim: int,
        emb: str = "sin",
        hidden_scale: float = 4.0,
        num_heads: int = 8,
        num_layers: int = 6,
        cross_first: bool = False,
        dropout: float = 0.0,
        max_positions: int = 1000,
        norm_in: bool = True,
        norm_in_group: bool = False,
        group_norm: int = False,
        norm_first: bool = False,
        norm_out: bool = False,
        max_period: float = 10000.0,
        weight_decay: float = 0.0,
        lr: tp.Optional[float] = None,
        layer_scale: bool = False,
        gelu: bool = True,
        sin_random_shift: int = 0,
        weight_pos_embed: float = 1.0,
        cape_mean_normalize: bool = True,
        cape_augment: bool = True,
        cape_glob_loc_scale: list = [5000.0, 1.0, 1.4],
        sparse_self_attn: bool = False,
        sparse_cross_attn: bool = False,
        mask_type: str = "diag",
        mask_random_seed: int = 42,
        sparse_attn_window: int = 500,
        global_window: int = 50,
        auto_sparsity: bool = False,
        sparsity: float = 0.95,
    ):
        super().__init__()
        """
        """
        assert dim % num_heads == 0

        hidden_dim = int(dim * hidden_scale)

        self.num_layers = num_layers
        # classic parity = 1 means that if idx%2 == 1 there is a
        # classical encoder else there is a cross encoder
        self.classic_parity = 1 if cross_first else 0
        self.emb = emb
        self.max_period = max_period
        self.weight_decay = weight_decay
        self.weight_pos_embed = weight_pos_embed
        self.sin_random_shift = sin_random_shift
        if emb == "cape":
            self.cape_mean_normalize = cape_mean_normalize
            self.cape_augment = cape_augment
            self.cape_glob_loc_scale = cape_glob_loc_scale
        if emb == "scaled":
            self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2)

        self.lr = lr

        activation: tp.Any = F.gelu if gelu else F.relu

        self.norm_in: nn.Module
        self.norm_in_t: nn.Module
        if norm_in:
            self.norm_in = nn.LayerNorm(dim)
            self.norm_in_t = nn.LayerNorm(dim)
        elif norm_in_group:
            self.norm_in = MyGroupNorm(int(norm_in_group), dim)
            self.norm_in_t = MyGroupNorm(int(norm_in_group), dim)
        else:
            self.norm_in = nn.Identity()
            self.norm_in_t = nn.Identity()

        # spectrogram layers
        self.layers = nn.ModuleList()
        # temporal layers
        self.layers_t = nn.ModuleList()

        kwargs_common = {
            "d_model": dim,
            "nhead": num_heads,
            "dim_feedforward": hidden_dim,
            "dropout": dropout,
            "activation": activation,
            "group_norm": group_norm,
            "norm_first": norm_first,
            "norm_out": norm_out,
            "layer_scale": layer_scale,
            "mask_type": mask_type,
            "mask_random_seed": mask_random_seed,
            "sparse_attn_window": sparse_attn_window,
            "global_window": global_window,
            "sparsity": sparsity,
            "auto_sparsity": auto_sparsity,
            "batch_first": True,
        }

        kwargs_classic_encoder = dict(kwargs_common)
        kwargs_classic_encoder.update({
            "sparse": sparse_self_attn,
        })
        kwargs_cross_encoder = dict(kwargs_common)
        kwargs_cross_encoder.update({
            "sparse": sparse_cross_attn,
        })

        for idx in range(num_layers):
            if idx % 2 == self.classic_parity:

                self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder))
                self.layers_t.append(
                    MyTransformerEncoderLayer(**kwargs_classic_encoder)
                )

            else:
                self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder))

                self.layers_t.append(
                    CrossTransformerEncoderLayer(**kwargs_cross_encoder)
                )

    def forward(self, x, xt):
        B, C, Fr, T1 = x.shape
        pos_emb_2d = create_2d_sin_embedding(
            C, Fr, T1, x.device, self.max_period
        )  # (1, C, Fr, T1)
        pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c")
        x = rearrange(x, "b c fr t1 -> b (t1 fr) c")
        x = self.norm_in(x)
        x = x + self.weight_pos_embed * pos_emb_2d

        B, C, T2 = xt.shape
        xt = rearrange(xt, "b c t2 -> b t2 c")  # now T2, B, C
        pos_emb = self._get_pos_embedding(T2, B, C, x.device)
        pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c")
        xt = self.norm_in_t(xt)
        xt = xt + self.weight_pos_embed * pos_emb

        for idx in range(self.num_layers):
            if idx % 2 == self.classic_parity:
                x = self.layers[idx](x)
                xt = self.layers_t[idx](xt)
            else:
                old_x = x
                x = self.layers[idx](x, xt)
                xt = self.layers_t[idx](xt, old_x)

        x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1)
        xt = rearrange(xt, "b t2 c -> b c t2")
        return x, xt

    def _get_pos_embedding(self, T, B, C, device):
        if self.emb == "sin":
            shift = random.randrange(self.sin_random_shift + 1)
            pos_emb = create_sin_embedding(
                T, C, shift=shift, device=device, max_period=self.max_period
            )
        elif self.emb == "cape":
            if self.training:
                pos_emb = create_sin_embedding_cape(
                    T,
                    C,
                    B,
                    device=device,
                    max_period=self.max_period,
                    mean_normalize=self.cape_mean_normalize,
                    augment=self.cape_augment,
                    max_global_shift=self.cape_glob_loc_scale[0],
                    max_local_shift=self.cape_glob_loc_scale[1],
                    max_scale=self.cape_glob_loc_scale[2],
                )
            else:
                pos_emb = create_sin_embedding_cape(
                    T,
                    C,
                    B,
                    device=device,
                    max_period=self.max_period,
                    mean_normalize=self.cape_mean_normalize,
                    augment=False,
                )

        elif self.emb == "scaled":
            pos = torch.arange(T, device=device)
            pos_emb = self.position_embeddings(pos)[:, None]

        return pos_emb

    def make_optim_group(self):
        group = {"params": list(self.parameters()), "weight_decay": self.weight_decay}
        if self.lr is not None:
            group["lr"] = self.lr
        return group


# Attention Modules


class MultiheadAttention(nn.Module):
    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        bias=True,
        add_bias_kv=False,
        add_zero_attn=False,
        kdim=None,
        vdim=None,
        batch_first=False,
        auto_sparsity=None,
    ):
        super().__init__()
        assert auto_sparsity is not None, "sanity check"
        self.num_heads = num_heads
        self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
        self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
        self.attn_drop = torch.nn.Dropout(dropout)
        self.proj = torch.nn.Linear(embed_dim, embed_dim, bias)
        self.proj_drop = torch.nn.Dropout(dropout)
        self.batch_first = batch_first
        self.auto_sparsity = auto_sparsity

    def forward(
        self,
        query,
        key,
        value,
        key_padding_mask=None,
        need_weights=True,
        attn_mask=None,
        average_attn_weights=True,
    ):

        if not self.batch_first:  # N, B, C
            query = query.permute(1, 0, 2)  # B, N_q, C
            key = key.permute(1, 0, 2)  # B, N_k, C
            value = value.permute(1, 0, 2)  # B, N_k, C
        B, N_q, C = query.shape
        B, N_k, C = key.shape

        q = (
            self.q(query)
            .reshape(B, N_q, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
        )
        q = q.flatten(0, 1)
        k = (
            self.k(key)
            .reshape(B, N_k, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
        )
        k = k.flatten(0, 1)
        v = (
            self.v(value)
            .reshape(B, N_k, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
        )
        v = v.flatten(0, 1)

        if self.auto_sparsity:
            assert attn_mask is None
            x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity)
        else:
            x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop)
        x = x.reshape(B, self.num_heads, N_q, C // self.num_heads)

        x = x.transpose(1, 2).reshape(B, N_q, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        if not self.batch_first:
            x = x.permute(1, 0, 2)
        return x, None


def scaled_query_key_softmax(q, k, att_mask):
    from xformers.ops import masked_matmul
    q = q / (k.size(-1)) ** 0.5
    att = masked_matmul(q, k.transpose(-2, -1), att_mask)
    att = torch.nn.functional.softmax(att, -1)
    return att


def scaled_dot_product_attention(q, k, v, att_mask, dropout):
    att = scaled_query_key_softmax(q, k, att_mask=att_mask)
    att = dropout(att)
    y = att @ v
    return y


def _compute_buckets(x, R):
    qq = torch.einsum('btf,bfhi->bhti', x, R)
    qq = torch.cat([qq, -qq], dim=-1)
    buckets = qq.argmax(dim=-1)

    return buckets.permute(0, 2, 1).byte().contiguous()


def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None):
    # assert False, "The code for the custom sparse kernel is not ready for release yet."
    from xformers.ops import find_locations, sparse_memory_efficient_attention
    n_hashes = 32
    proj_size = 4
    query, key, value = [x.contiguous() for x in [query, key, value]]
    with torch.no_grad():
        R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device)
        bucket_query = _compute_buckets(query, R)
        bucket_key = _compute_buckets(key, R)
        row_offsets, column_indices = find_locations(
            bucket_query, bucket_key, sparsity, infer_sparsity)
    return sparse_memory_efficient_attention(
        query, key, value, row_offsets, column_indices, attn_bias)