File size: 23,915 Bytes
fa4dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
import librosa
import numpy as np
import soundfile as sf
import math
import random
import math
import platform
import traceback
from . import pyrb
#cur
OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = 'arm'

if OPERATING_SYSTEM == 'Windows':
    from pyrubberband import pyrb
else:
    from . import pyrb

if OPERATING_SYSTEM == 'Darwin':
    wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest" 
else:
    wav_resolution = "sinc_fastest"

MAX_SPEC = 'Max Spec'
MIN_SPEC = 'Min Spec'
AVERAGE = 'Average'

def crop_center(h1, h2):
    h1_shape = h1.size()
    h2_shape = h2.size()

    if h1_shape[3] == h2_shape[3]:
        return h1
    elif h1_shape[3] < h2_shape[3]:
        raise ValueError('h1_shape[3] must be greater than h2_shape[3]')

    s_time = (h1_shape[3] - h2_shape[3]) // 2
    e_time = s_time + h2_shape[3]
    h1 = h1[:, :, :, s_time:e_time]

    return h1

def preprocess(X_spec):
    X_mag = np.abs(X_spec)
    X_phase = np.angle(X_spec)

    return X_mag, X_phase

def make_padding(width, cropsize, offset):
    left = offset
    roi_size = cropsize - offset * 2
    if roi_size == 0:
        roi_size = cropsize
    right = roi_size - (width % roi_size) + left

    return left, right, roi_size

def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
    if reverse:
        wave_left = np.flip(np.asfortranarray(wave[0]))
        wave_right = np.flip(np.asfortranarray(wave[1]))
    elif mid_side:
        wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
        wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
    elif mid_side_b2:
        wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
        wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
    else:
        wave_left = np.asfortranarray(wave[0])
        wave_right = np.asfortranarray(wave[1])

    spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
    
    spec = np.asfortranarray([spec_left, spec_right])

    return spec
   
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
    import threading

    if reverse:
        wave_left = np.flip(np.asfortranarray(wave[0]))
        wave_right = np.flip(np.asfortranarray(wave[1]))
    elif mid_side:
        wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
        wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
    elif mid_side_b2:
        wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
        wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
    else:
        wave_left = np.asfortranarray(wave[0])
        wave_right = np.asfortranarray(wave[1])
   
    def run_thread(**kwargs):
        global spec_left
        spec_left = librosa.stft(**kwargs)

    thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
    thread.start()
    spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
    thread.join()   
    
    spec = np.asfortranarray([spec_left, spec_right])

    return spec
    
def normalize(wave, is_normalize=False):
    """Save output music files"""
    maxv = np.abs(wave).max()
    if maxv > 1.0:
        print(f"\nNormalization Set {is_normalize}: Input above threshold for clipping. Max:{maxv}")
        if is_normalize:
            print(f"The result was normalized.")
            wave /= maxv
        else:
            print(f"The result was not normalized.")
    else:
        print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}")
    
    return wave
    
def normalize_two_stem(wave, mix, is_normalize=False):
    """Save output music files"""
    
    maxv = np.abs(wave).max()
    max_mix = np.abs(mix).max()
    
    if maxv > 1.0:
        print(f"\nNormalization Set {is_normalize}: Primary source above threshold for clipping. Max:{maxv}")
        print(f"\nNormalization Set {is_normalize}: Mixture above threshold for clipping. Max:{max_mix}")
        if is_normalize:
            print(f"The result was normalized.")
            wave /= maxv
            mix /= maxv
        else:
            print(f"The result was not normalized.")
    else:
        print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}")
    
    
    print(f"\nNormalization Set {is_normalize}: Primary source - Max:{np.abs(wave).max()}")
    print(f"\nNormalization Set {is_normalize}: Mixture - Max:{np.abs(mix).max()}")
    
    return wave, mix    

def combine_spectrograms(specs, mp):
    l = min([specs[i].shape[2] for i in specs])    
    spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
    offset = 0
    bands_n = len(mp.param['band'])
    
    for d in range(1, bands_n + 1):
        h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
        spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
        offset += h
        
    if offset > mp.param['bins']:
        raise ValueError('Too much bins')
        
    # lowpass fiter
    if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:   
        if bands_n == 1:
            spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
        else:
            gp = 1        
            for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
                g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
                gp = g
                spec_c[:, b, :] *= g
                
    return np.asfortranarray(spec_c)
    
def spectrogram_to_image(spec, mode='magnitude'):
    if mode == 'magnitude':
        if np.iscomplexobj(spec):
            y = np.abs(spec)
        else:
            y = spec
        y = np.log10(y ** 2 + 1e-8)
    elif mode == 'phase':
        if np.iscomplexobj(spec):
            y = np.angle(spec)
        else:
            y = spec

    y -= y.min()
    y *= 255 / y.max()
    img = np.uint8(y)

    if y.ndim == 3:
        img = img.transpose(1, 2, 0)
        img = np.concatenate([
            np.max(img, axis=2, keepdims=True), img
        ], axis=2)

    return img

def reduce_vocal_aggressively(X, y, softmask):
    v = X - y
    y_mag_tmp = np.abs(y)
    v_mag_tmp = np.abs(v)

    v_mask = v_mag_tmp > y_mag_tmp
    y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)

    return y_mag * np.exp(1.j * np.angle(y))

def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
    mask = y_mask
    
    try:
        if min_range < fade_size * 2:
            raise ValueError('min_range must be >= fade_size * 2')

        idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
        start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
        end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
        artifact_idx = np.where(end_idx - start_idx > min_range)[0]
        weight = np.zeros_like(y_mask)
        if len(artifact_idx) > 0:
            start_idx = start_idx[artifact_idx]
            end_idx = end_idx[artifact_idx]
            old_e = None
            for s, e in zip(start_idx, end_idx):
                if old_e is not None and s - old_e < fade_size:
                    s = old_e - fade_size * 2

                if s != 0:
                    weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
                else:
                    s -= fade_size

                if e != y_mask.shape[2]:
                    weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
                else:
                    e += fade_size

                weight[:, :, s + fade_size:e - fade_size] = 1
                old_e = e

        v_mask = 1 - y_mask
        y_mask += weight * v_mask
        
        mask = y_mask
    except Exception as e:
        error_name = f'{type(e).__name__}'
        traceback_text = ''.join(traceback.format_tb(e.__traceback__))
        message = f'{error_name}: "{e}"\n{traceback_text}"'
        print('Post Process Failed: ', message)
        

    return mask

def align_wave_head_and_tail(a, b):
    l = min([a[0].size, b[0].size])  
    
    return a[:l,:l], b[:l,:l]
    
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse, clamp=False):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])

    wave_left = librosa.istft(spec_left, hop_length=hop_length)
    wave_right = librosa.istft(spec_right, hop_length=hop_length)

    if reverse:
        return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
    elif mid_side:
        return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
    elif mid_side_b2:
        return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
    else:
        return np.asfortranarray([wave_left, wave_right])
    
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
    import threading

    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])
    
    def run_thread(**kwargs):
        global wave_left
        wave_left = librosa.istft(**kwargs)
        
    thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
    thread.start()
    wave_right = librosa.istft(spec_right, hop_length=hop_length)
    thread.join()   
    
    if reverse:
        return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
    elif mid_side:
        return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
    elif mid_side_b2:
        return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
    else:
        return np.asfortranarray([wave_left, wave_right])
    
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
    bands_n = len(mp.param['band'])    
    offset = 0

    for d in range(1, bands_n + 1):
        bp = mp.param['band'][d]
        spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
        h = bp['crop_stop'] - bp['crop_start']
        spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
        
        offset += h
        if d == bands_n: # higher
            if extra_bins_h: # if --high_end_process bypass
                max_bin = bp['n_fft'] // 2
                spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
            if bp['hpf_start'] > 0:
                spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
            if bands_n == 1:
                wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
            else:
                wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
        else:
            sr = mp.param['band'][d+1]['sr']
            if d == 1: # lower
                spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
                wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type=wav_resolution)
            else: # mid
                spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
                spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
                wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
                wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
        
    return wave

def fft_lp_filter(spec, bin_start, bin_stop):
    g = 1.0
    for b in range(bin_start, bin_stop):
        g -= 1 / (bin_stop - bin_start)
        spec[:, b, :] = g * spec[:, b, :]
        
    spec[:, bin_stop:, :] *= 0

    return spec

def fft_hp_filter(spec, bin_start, bin_stop):
    g = 1.0
    for b in range(bin_start, bin_stop, -1):
        g -= 1 / (bin_start - bin_stop)
        spec[:, b, :] = g * spec[:, b, :]
    
    spec[:, 0:bin_stop+1, :] *= 0

    return spec

def mirroring(a, spec_m, input_high_end, mp):
    if 'mirroring' == a:
        mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
        mirror = mirror * np.exp(1.j * np.angle(input_high_end))
        
        return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
        
    if 'mirroring2' == a:
        mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
        mi = np.multiply(mirror, input_high_end * 1.7)
        
        return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)

def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
    aggr = aggressiveness['value']

    if aggr != 0:
        if is_non_accom_stem:
            aggr = 1 - aggr
    
        aggr = [aggr, aggr]
    
        if aggressiveness['aggr_correction'] is not None:
            aggr[0] += aggressiveness['aggr_correction']['left']
            aggr[1] += aggressiveness['aggr_correction']['right']

        for ch in range(2):
            mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
            mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])

        # if is_non_accom_stem:
        #     mask = (1.0 - mask)
        
    return mask

def stft(wave, nfft, hl):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])
    spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
    spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
    spec = np.asfortranarray([spec_left, spec_right])

    return spec

def istft(spec, hl):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])
    wave_left = librosa.istft(spec_left, hop_length=hl)
    wave_right = librosa.istft(spec_right, hop_length=hl)
    wave = np.asfortranarray([wave_left, wave_right])

    return wave

def spec_effects(wave, algorithm='Default', value=None):
    spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
    if algorithm == 'Min_Mag':
        v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
        wave = istft(v_spec_m,1024)
    elif algorithm == 'Max_Mag':
        v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
        wave = istft(v_spec_m,1024)
    elif algorithm == 'Default':
        wave = (wave[1] * value) + (wave[0] * (1-value))
    elif algorithm == 'Invert_p':
        X_mag = np.abs(spec[0])
        y_mag = np.abs(spec[1])            
        max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)  
        v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
        wave = istft(v_spec,1024)
            
    return wave      

def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
    wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
    
    if wave.ndim == 1:
        wave = np.asfortranarray([wave,wave])

    return wave

def wave_to_spectrogram_no_mp(wave):
    
    spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
    
    if spec.ndim == 1:
        spec = np.asfortranarray([spec,spec])

    return spec

def invert_audio(specs, invert_p=True):
    
    ln = min([specs[0].shape[2], specs[1].shape[2]])
    specs[0] = specs[0][:,:,:ln]
    specs[1] = specs[1][:,:,:ln]
        
    if invert_p:
        X_mag = np.abs(specs[0])
        y_mag = np.abs(specs[1])            
        max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)  
        v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
    else:
        specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
        v_spec = specs[0] - specs[1]

    return v_spec

def invert_stem(mixture, stem):
    
    mixture = wave_to_spectrogram_no_mp(mixture)
    stem = wave_to_spectrogram_no_mp(stem)
    output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))

    return -output.T

def ensembling(a, specs):   
    for i in range(1, len(specs)):
        if i == 1:
            spec = specs[0]

        ln = min([spec.shape[2], specs[i].shape[2]])
        spec = spec[:,:,:ln]
        specs[i] = specs[i][:,:,:ln]
        
        if MIN_SPEC == a:
            spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
        if MAX_SPEC == a:
            spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)  
        if AVERAGE == a:
            spec = np.where(np.abs(specs[i]) == np.abs(spec), specs[i], spec)  

    return spec

def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path):

    wavs_ = []
    
    if algorithm == AVERAGE:
        output = average_audio(audio_input)
        samplerate = 44100
    else:
        specs = []
        
        for i in range(len(audio_input)):  
            wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
            wavs_.append(wave)
            spec = wave_to_spectrogram_no_mp(wave)
            specs.append(spec)
        
        wave_shapes = [w.shape[1] for w in wavs_]
        target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
        
        output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
        output = to_shape(output, target_shape.shape)

    sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)

def to_shape(x, target_shape):
    padding_list = []
    for x_dim, target_dim in zip(x.shape, target_shape):
        pad_value = (target_dim - x_dim)
        pad_tuple = ((0, pad_value))
        padding_list.append(pad_tuple)
    
    return np.pad(x, tuple(padding_list), mode='constant')

def to_shape_minimize(x: np.ndarray, target_shape):
    
    padding_list = []
    for x_dim, target_dim in zip(x.shape, target_shape):
        pad_value = (target_dim - x_dim)
        pad_tuple = ((0, pad_value))
        padding_list.append(pad_tuple)
    
    return np.pad(x, tuple(padding_list), mode='constant')

def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False):

    wav, sr = librosa.load(audio_file, sr=44100, mono=False)

    if wav.ndim == 1:
        wav = np.asfortranarray([wav,wav])

    if is_pitch:
        wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
        wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
    else:
        wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
        wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)

    if wav_1.shape > wav_2.shape:
        wav_2 = to_shape(wav_2, wav_1.shape)
    if wav_1.shape < wav_2.shape:
        wav_1 = to_shape(wav_1, wav_2.shape)
        
    wav_mix = np.asfortranarray([wav_1, wav_2])
    
    sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
    save_format(export_path)
    
def average_audio(audio):
    
    waves = []
    wave_shapes = []
    final_waves = []

    for i in range(len(audio)):
        wave = librosa.load(audio[i], sr=44100, mono=False)
        waves.append(wave[0])
        wave_shapes.append(wave[0].shape[1])

    wave_shapes_index = wave_shapes.index(max(wave_shapes))
    target_shape = waves[wave_shapes_index]
    waves.pop(wave_shapes_index)
    final_waves.append(target_shape)

    for n_array in waves:
        wav_target = to_shape(n_array, target_shape.shape)
        final_waves.append(wav_target)

    waves = sum(final_waves)
    waves = waves/len(audio)

    return waves
    
def average_dual_sources(wav_1, wav_2, value):
    
    if wav_1.shape > wav_2.shape:
        wav_2 = to_shape(wav_2, wav_1.shape)
    if wav_1.shape < wav_2.shape:
        wav_1 = to_shape(wav_1, wav_2.shape)

    wave = (wav_1 * value) + (wav_2 * (1-value))

    return wave
    
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
    
    if wav_1.shape > wav_2.shape:
        wav_2 = to_shape(wav_2, wav_1.shape)
    if wav_1.shape < wav_2.shape:
        ln = min([wav_1.shape[1], wav_2.shape[1]])
        wav_2 = wav_2[:,:ln]

    ln = min([wav_1.shape[1], wav_2.shape[1]])
    wav_1 = wav_1[:,:ln]
    wav_2 = wav_2[:,:ln]

    return wav_2
    
def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_normalization, command_Text, progress_bar_main_var, save_format):
    def get_diff(a, b):
        corr = np.correlate(a, b, "full")
        diff = corr.argmax() - (b.shape[0] - 1)
        return diff
  
    progress_bar_main_var.set(10)
    
    # read tracks
    wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
    wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
    wav1 = wav1.transpose()
    wav2 = wav2.transpose()

    command_Text(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
    
    wav2_org = wav2.copy()
    progress_bar_main_var.set(20)
    
    command_Text("Processing files... \n")
    
  # pick random position and get diff
    
    counts = {}       # counting up for each diff value
    progress = 20
    
    check_range = 64

    base = (64 / check_range)

    for i in range(check_range):
        index = int(random.uniform(44100 * 2, min(wav1.shape[0], wav2.shape[0]) - 44100 * 2))
        shift = int(random.uniform(-22050,+22050))
        samp1 = wav1[index      :index      +44100, 0]          # currently use left channel
        samp2 = wav2[index+shift:index+shift+44100, 0]
        progress += 1 * base
        progress_bar_main_var.set(progress)
        diff = get_diff(samp1, samp2)
        diff -= shift
        
    if abs(diff) < 22050:
        if not diff in counts:
            counts[diff] = 0
        counts[diff] += 1
  
  # use max counted diff value
    max_count = 0
    est_diff  = 0
    for diff in counts.keys():
        if counts[diff] > max_count:
            max_count = counts[diff]
            est_diff = diff
    
    command_Text(f"Estimated difference is {est_diff} (count: {max_count})\n")

    progress_bar_main_var.set(90)
    
    audio_files = []

    def save_aligned_audio(wav2_aligned):
        command_Text(f"Aligned File 2 with File 1.\n")
        command_Text(f"Saving files... ")
        sf.write(file2_aligned, normalize(wav2_aligned, is_normalization), sr2, subtype=wav_type_set)
        save_format(file2_aligned)
        min_len = min(wav1.shape[0], wav2_aligned.shape[0])
        wav_sub = wav1[:min_len] - wav2_aligned[:min_len]
        audio_files.append(file2_aligned)
        return min_len, wav_sub
    
  # make aligned track 2
    if est_diff > 0:
        wav2_aligned = np.append(np.zeros((est_diff, 2)), wav2_org, axis=0)
        min_len, wav_sub = save_aligned_audio(wav2_aligned)
    elif est_diff < 0:
        wav2_aligned = wav2_org[-est_diff:]
        min_len, wav_sub = save_aligned_audio(wav2_aligned)
    else:
        command_Text(f"Audio files already aligned.\n")
        command_Text(f"Saving inverted track... ")
        min_len = min(wav1.shape[0], wav2.shape[0])
        wav_sub = wav1[:min_len] - wav2[:min_len]

    wav_sub = np.clip(wav_sub, -1, +1)
  
    sf.write(file_subtracted, normalize(wav_sub, is_normalization), sr1, subtype=wav_type_set)
    save_format(file_subtracted)
  
    progress_bar_main_var.set(95)