File size: 4,656 Bytes
fa4dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from torch import nn
import torch.nn.functional as F

from lib_v5 import spec_utils

class Conv2DBNActiv(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
        super(Conv2DBNActiv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                nin, nout,
                kernel_size=ksize,
                stride=stride,
                padding=pad,
                dilation=dilation,
                bias=False),
            nn.BatchNorm2d(nout),
            activ()
        )

    def __call__(self, x):
        return self.conv(x)

class SeperableConv2DBNActiv(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
        super(SeperableConv2DBNActiv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                nin, nin,
                kernel_size=ksize,
                stride=stride,
                padding=pad,
                dilation=dilation,
                groups=nin,
                bias=False),
            nn.Conv2d(
                nin, nout,
                kernel_size=1,
                bias=False),
            nn.BatchNorm2d(nout),
            activ()
        )

    def __call__(self, x):
        return self.conv(x)


class Encoder(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
        super(Encoder, self).__init__()
        self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
        self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)

    def __call__(self, x):
        skip = self.conv1(x)
        h = self.conv2(skip)

        return h, skip


class Decoder(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
        super(Decoder, self).__init__()
        self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
        self.dropout = nn.Dropout2d(0.1) if dropout else None

    def __call__(self, x, skip=None):
        x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
        if skip is not None:
            skip = spec_utils.crop_center(skip, x)
            x = torch.cat([x, skip], dim=1)
        h = self.conv(x)

        if self.dropout is not None:
            h = self.dropout(h)

        return h


class ASPPModule(nn.Module):

    def __init__(self, nn_architecture, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
        super(ASPPModule, self).__init__()
        self.conv1 = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, None)),
            Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
        )
        
        self.nn_architecture = nn_architecture
        self.six_layer = [129605]
        self.seven_layer = [537238, 537227, 33966]
        
        extra_conv = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
        
        self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
        self.conv3 = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
        self.conv4 = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
        self.conv5 = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
        
        if self.nn_architecture in self.six_layer:
            self.conv6 = extra_conv
            nin_x = 6
        elif self.nn_architecture in self.seven_layer:
            self.conv6 = extra_conv
            self.conv7 = extra_conv
            nin_x = 7
        else:
            nin_x = 5
            
        self.bottleneck = nn.Sequential(
            Conv2DBNActiv(nin * nin_x, nout, 1, 1, 0, activ=activ),
            nn.Dropout2d(0.1)
        )

    def forward(self, x):
        _, _, h, w = x.size()
        feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
        feat2 = self.conv2(x)
        feat3 = self.conv3(x)
        feat4 = self.conv4(x)
        feat5 = self.conv5(x)
        
        if self.nn_architecture in self.six_layer:
            feat6 = self.conv6(x)
            out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1)
        elif self.nn_architecture in self.seven_layer:
            feat6 = self.conv6(x)
            feat7 = self.conv7(x)
            out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
        else:
            out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
            
        bottle = self.bottleneck(out)
        return bottle