File size: 49,282 Bytes
fa4dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
from __future__ import annotations
from typing import TYPE_CHECKING
from demucs.apply import apply_model, demucs_segments
from demucs.hdemucs import HDemucs
from demucs.model_v2 import auto_load_demucs_model_v2
from demucs.pretrained import get_model as _gm
from demucs.utils import apply_model_v1
from demucs.utils import apply_model_v2
from lib_v5 import spec_utils
from lib_v5.vr_network import nets
from lib_v5.vr_network import nets_new
#from lib_v5.vr_network.model_param_init import ModelParameters
from pathlib import Path
from gui_data.constants import *
from gui_data.error_handling import *
import audioread
import gzip
import librosa
import math
import numpy as np
import onnxruntime as ort
import os
import torch
import warnings
import pydub
import soundfile as sf
import traceback
import lib_v5.mdxnet as MdxnetSet

if TYPE_CHECKING:
    from UVR import ModelData

warnings.filterwarnings("ignore")
cpu = torch.device('cpu')

class SeperateAttributes:
    def __init__(self, model_data: ModelData, process_data: dict, main_model_primary_stem_4_stem=None, main_process_method=None):
        
        self.list_all_models: list
        self.process_data = process_data
        self.progress_value = 0
        self.set_progress_bar = process_data['set_progress_bar']
        self.write_to_console = process_data['write_to_console']
        self.audio_file = process_data['audio_file']
        self.audio_file_base = process_data['audio_file_base']
        self.export_path = process_data['export_path']
        self.cached_source_callback = process_data['cached_source_callback']
        self.cached_model_source_holder = process_data['cached_model_source_holder']
        self.is_4_stem_ensemble = process_data['is_4_stem_ensemble']
        self.list_all_models = process_data['list_all_models']
        self.process_iteration = process_data['process_iteration']
        self.mixer_path = model_data.mixer_path
        self.model_samplerate = model_data.model_samplerate
        self.model_capacity = model_data.model_capacity
        self.is_vr_51_model = model_data.is_vr_51_model
        self.is_pre_proc_model = model_data.is_pre_proc_model
        self.is_secondary_model_activated = model_data.is_secondary_model_activated if not self.is_pre_proc_model else False
        self.is_secondary_model = model_data.is_secondary_model if not self.is_pre_proc_model else True
        self.process_method = model_data.process_method
        self.model_path = model_data.model_path
        self.model_name = model_data.model_name
        self.model_basename = model_data.model_basename
        self.wav_type_set = model_data.wav_type_set
        self.mp3_bit_set = model_data.mp3_bit_set
        self.save_format = model_data.save_format
        self.is_gpu_conversion = model_data.is_gpu_conversion
        self.is_normalization = model_data.is_normalization
        self.is_primary_stem_only = model_data.is_primary_stem_only if not self.is_secondary_model else model_data.is_primary_model_primary_stem_only
        self.is_secondary_stem_only = model_data.is_secondary_stem_only if not self.is_secondary_model else model_data.is_primary_model_secondary_stem_only      
        self.is_ensemble_mode = model_data.is_ensemble_mode
        self.secondary_model = model_data.secondary_model #
        self.primary_model_primary_stem = model_data.primary_model_primary_stem
        self.primary_stem = model_data.primary_stem #
        self.secondary_stem = model_data.secondary_stem #
        self.is_invert_spec = model_data.is_invert_spec #
        self.is_mixer_mode = model_data.is_mixer_mode #
        self.secondary_model_scale = model_data.secondary_model_scale #
        self.is_demucs_pre_proc_model_inst_mix = model_data.is_demucs_pre_proc_model_inst_mix #
        self.primary_source_map = {}
        self.secondary_source_map = {}
        self.primary_source = None
        self.secondary_source = None
        self.secondary_source_primary = None
        self.secondary_source_secondary = None

        if not model_data.process_method == DEMUCS_ARCH_TYPE:
            if process_data['is_ensemble_master'] and not self.is_4_stem_ensemble:
                if not model_data.ensemble_primary_stem == self.primary_stem:
                    self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
            
            if self.is_secondary_model and not process_data['is_ensemble_master']:
                if not self.primary_model_primary_stem == self.primary_stem and not main_model_primary_stem_4_stem:
                    self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
                    
            if main_model_primary_stem_4_stem:
                self.is_primary_stem_only = True if main_model_primary_stem_4_stem == self.primary_stem else False
                self.is_secondary_stem_only = True if not main_model_primary_stem_4_stem == self.primary_stem else False

            if self.is_pre_proc_model:
                self.is_primary_stem_only = True if self.primary_stem == INST_STEM else False
                self.is_secondary_stem_only = True if self.secondary_stem == INST_STEM else False

        if model_data.process_method == MDX_ARCH_TYPE:
            self.is_mdx_ckpt = model_data.is_mdx_ckpt
            self.primary_model_name, self.primary_sources = self.cached_source_callback(MDX_ARCH_TYPE, model_name=self.model_basename)
            self.is_denoise = model_data.is_denoise
            self.mdx_batch_size = model_data.mdx_batch_size
            self.compensate = model_data.compensate
            self.dim_f, self.dim_t = model_data.mdx_dim_f_set, 2**model_data.mdx_dim_t_set
            self.n_fft = model_data.mdx_n_fft_scale_set
            self.chunks = model_data.chunks
            self.margin = model_data.margin
            self.adjust = 1
            self.dim_c = 4
            self.hop = 1024
            
            if self.is_gpu_conversion >= 0 and torch.cuda.is_available():
                self.device, self.run_type = torch.device('cuda:0'), ['CUDAExecutionProvider']
            else:
                self.device, self.run_type = torch.device('cpu'), ['CPUExecutionProvider']

        if model_data.process_method == DEMUCS_ARCH_TYPE:
            self.demucs_stems = model_data.demucs_stems if not main_process_method in [MDX_ARCH_TYPE, VR_ARCH_TYPE] else None
            self.secondary_model_4_stem = model_data.secondary_model_4_stem
            self.secondary_model_4_stem_scale = model_data.secondary_model_4_stem_scale
            self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem
            self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem
            self.is_chunk_demucs = model_data.is_chunk_demucs
            self.segment = model_data.segment
            self.demucs_version = model_data.demucs_version
            self.demucs_source_list = model_data.demucs_source_list
            self.demucs_source_map = model_data.demucs_source_map
            self.is_demucs_combine_stems = model_data.is_demucs_combine_stems
            self.demucs_stem_count = model_data.demucs_stem_count
            self.pre_proc_model = model_data.pre_proc_model
            
            if self.is_secondary_model and not process_data['is_ensemble_master']:
                if not self.demucs_stem_count == 2 and model_data.primary_model_primary_stem == INST_STEM:
                    self.primary_stem = VOCAL_STEM
                    self.secondary_stem = INST_STEM
                else:
                    self.primary_stem = model_data.primary_model_primary_stem
                    self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
            
            if self.is_chunk_demucs:
                self.chunks_demucs = model_data.chunks_demucs
                self.margin_demucs = model_data.margin_demucs
            else:
                self.chunks_demucs = 0
                self.margin_demucs = 44100
                
            self.shifts = model_data.shifts
            self.is_split_mode = model_data.is_split_mode if not self.demucs_version == DEMUCS_V4 else True
            self.overlap = model_data.overlap
            self.primary_model_name, self.primary_sources = self.cached_source_callback(DEMUCS_ARCH_TYPE, model_name=self.model_basename)

        if model_data.process_method == VR_ARCH_TYPE:
            self.primary_model_name, self.primary_sources = self.cached_source_callback(VR_ARCH_TYPE, model_name=self.model_basename)
            self.mp = model_data.vr_model_param
            self.high_end_process = model_data.is_high_end_process
            self.is_tta = model_data.is_tta
            self.is_post_process = model_data.is_post_process
            self.is_gpu_conversion = model_data.is_gpu_conversion
            self.batch_size = model_data.batch_size
            self.window_size = model_data.window_size
            self.input_high_end_h = None
            self.post_process_threshold = model_data.post_process_threshold
            self.aggressiveness = {'value': model_data.aggression_setting, 
                                   'split_bin': self.mp.param['band'][1]['crop_stop'], 
                                   'aggr_correction': self.mp.param.get('aggr_correction')}
            
    def start_inference_console_write(self):
        
        if self.is_secondary_model and not self.is_pre_proc_model:
            self.write_to_console(INFERENCE_STEP_2_SEC(self.process_method, self.model_basename))
        
        if self.is_pre_proc_model:
            self.write_to_console(INFERENCE_STEP_2_PRE(self.process_method, self.model_basename))
        
    def running_inference_console_write(self, is_no_write=False):
        
        self.write_to_console(DONE, base_text='') if not is_no_write else None
        self.set_progress_bar(0.05) if not is_no_write else None
        
        if self.is_secondary_model and not self.is_pre_proc_model:
            self.write_to_console(INFERENCE_STEP_1_SEC)
        elif self.is_pre_proc_model:
            self.write_to_console(INFERENCE_STEP_1_PRE)
        else:
            self.write_to_console(INFERENCE_STEP_1)
        
    def running_inference_progress_bar(self, length, is_match_mix=False):
        if not is_match_mix:
            self.progress_value += 1

            if (0.8/length*self.progress_value) >= 0.8:
                length = self.progress_value + 1
  
            self.set_progress_bar(0.1, (0.8/length*self.progress_value))
        
    def load_cached_sources(self, is_4_stem_demucs=False):
        
        if self.is_secondary_model and not self.is_pre_proc_model:
            self.write_to_console(INFERENCE_STEP_2_SEC_CACHED_MODOEL(self.process_method, self.model_basename))
        elif self.is_pre_proc_model:
            self.write_to_console(INFERENCE_STEP_2_PRE_CACHED_MODOEL(self.process_method, self.model_basename))
        else:
            self.write_to_console(INFERENCE_STEP_2_PRIMARY_CACHED)

        if not is_4_stem_demucs:
            primary_stem, secondary_stem = gather_sources(self.primary_stem, self.secondary_stem, self.primary_sources)
            
            return primary_stem, secondary_stem
            
    def cache_source(self, secondary_sources):
        
        model_occurrences = self.list_all_models.count(self.model_basename)
        
        if not model_occurrences <= 1:
            if self.process_method == MDX_ARCH_TYPE:
                self.cached_model_source_holder(MDX_ARCH_TYPE, secondary_sources, self.model_basename)
                
            if self.process_method == VR_ARCH_TYPE:
                self.cached_model_source_holder(VR_ARCH_TYPE, secondary_sources, self.model_basename)

            if self.process_method == DEMUCS_ARCH_TYPE:
                self.cached_model_source_holder(DEMUCS_ARCH_TYPE, secondary_sources, self.model_basename)
                
    def write_audio(self, stem_path, stem_source, samplerate, secondary_model_source=None, model_scale=None):
                
        if not self.is_secondary_model:
            if self.is_secondary_model_activated:
                if isinstance(secondary_model_source, np.ndarray):
                    secondary_model_scale = model_scale if model_scale else self.secondary_model_scale
                    stem_source = spec_utils.average_dual_sources(stem_source, secondary_model_source, secondary_model_scale)
            
            sf.write(stem_path, stem_source, samplerate, subtype=self.wav_type_set)
            save_format(stem_path, self.save_format, self.mp3_bit_set) if not self.is_ensemble_mode else None
            
            self.write_to_console(DONE, base_text='')
            self.set_progress_bar(0.95)

    def run_mixer(self, mix, sources):
        try:
            if self.is_mixer_mode and len(sources) == 4:
                mixer = MdxnetSet.Mixer(self.device, self.mixer_path).eval()
                with torch.no_grad():
                    mix = torch.tensor(mix, dtype=torch.float32)
                    sources_ = torch.tensor(sources).detach()
                    x = torch.cat([sources_, mix.unsqueeze(0)], 0)
                    sources_ = mixer(x)
                final_source = np.array(sources_)
            else:
                final_source = sources
        except Exception as e:
            error_name = f'{type(e).__name__}'
            traceback_text = ''.join(traceback.format_tb(e.__traceback__))
            message = f'{error_name}: "{e}"\n{traceback_text}"'
            print('Mixer Failed: ', message)
            final_source = sources
            
        return final_source

class SeperateMDX(SeperateAttributes):        

    def seperate(self):
        samplerate = 44100
          
        if self.primary_model_name == self.model_basename and self.primary_sources:
            self.primary_source, self.secondary_source = self.load_cached_sources()
        else:
            self.start_inference_console_write()

            if self.is_mdx_ckpt:
                model_params = torch.load(self.model_path, map_location=lambda storage, loc: storage)['hyper_parameters']
                self.dim_c, self.hop = model_params['dim_c'], model_params['hop_length']
                separator = MdxnetSet.ConvTDFNet(**model_params)
                self.model_run = separator.load_from_checkpoint(self.model_path).to(self.device).eval()
            else:
                ort_ = ort.InferenceSession(self.model_path, providers=self.run_type)
                self.model_run = lambda spek:ort_.run(None, {'input': spek.cpu().numpy()})[0]

            self.initialize_model_settings()
            self.running_inference_console_write()
            mdx_net_cut = True if self.primary_stem in MDX_NET_FREQ_CUT else False
            mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks, self.margin, mdx_net_cut=mdx_net_cut)
            source = self.demix_base(mix, is_ckpt=self.is_mdx_ckpt)[0]
            self.write_to_console(DONE, base_text='')            

        if self.is_secondary_model_activated:
            if self.secondary_model:
                self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
        
        if not self.is_secondary_stem_only:
            self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
            primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
            if not isinstance(self.primary_source, np.ndarray):
                self.primary_source = spec_utils.normalize(source, self.is_normalization).T
            self.primary_source_map = {self.primary_stem: self.primary_source}
            self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)

        if not self.is_primary_stem_only:
            self.write_to_console(f'{SAVING_STEM[0]}{self.secondary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
            secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
            if not isinstance(self.secondary_source, np.ndarray):
                raw_mix = self.demix_base(raw_mix, is_match_mix=True)[0] if mdx_net_cut else raw_mix
                self.secondary_source, raw_mix = spec_utils.normalize_two_stem(source*self.compensate, raw_mix, self.is_normalization)
            
                if self.is_invert_spec:
                    self.secondary_source = spec_utils.invert_stem(raw_mix, self.secondary_source)
                else:
                    self.secondary_source = (-self.secondary_source.T+raw_mix.T)

            self.secondary_source_map = {self.secondary_stem: self.secondary_source}
            self.write_audio(secondary_stem_path, self.secondary_source, samplerate, self.secondary_source_secondary)

        torch.cuda.empty_cache()
        secondary_sources = {**self.primary_source_map, **self.secondary_source_map}

        self.cache_source(secondary_sources)

        if self.is_secondary_model:
            return secondary_sources

    def initialize_model_settings(self):
        self.n_bins = self.n_fft//2+1
        self.trim = self.n_fft//2
        self.chunk_size = self.hop * (self.dim_t-1)
        self.window = torch.hann_window(window_length=self.n_fft, periodic=False).to(self.device)
        self.freq_pad = torch.zeros([1, self.dim_c, self.n_bins-self.dim_f, self.dim_t]).to(self.device)
        self.gen_size = self.chunk_size-2*self.trim

    def initialize_mix(self, mix, is_ckpt=False):
        if is_ckpt:
            pad = self.gen_size + self.trim - ((mix.shape[-1]) % self.gen_size)
            mixture = np.concatenate((np.zeros((2, self.trim), dtype='float32'),mix, np.zeros((2, pad), dtype='float32')), 1)
            num_chunks = mixture.shape[-1] // self.gen_size
            mix_waves = [mixture[:, i * self.gen_size: i * self.gen_size + self.chunk_size] for i in range(num_chunks)]
        else:
            mix_waves = []
            n_sample = mix.shape[1]
            pad = self.gen_size - n_sample%self.gen_size
            mix_p = np.concatenate((np.zeros((2,self.trim)), mix, np.zeros((2,pad)), np.zeros((2,self.trim))), 1)
            i = 0
            while i < n_sample + pad:
                waves = np.array(mix_p[:, i:i+self.chunk_size])
                mix_waves.append(waves)
                i += self.gen_size
                
        mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)

        return mix_waves, pad
    
    def demix_base(self, mix, is_ckpt=False, is_match_mix=False):
        chunked_sources = []
        for slice in mix:
            sources = []
            tar_waves_ = []
            mix_p = mix[slice]
            mix_waves, pad = self.initialize_mix(mix_p, is_ckpt=is_ckpt)
            mix_waves = mix_waves.split(self.mdx_batch_size)
            pad = mix_p.shape[-1] if is_ckpt else -pad
            with torch.no_grad():
                for mix_wave in mix_waves:
                    self.running_inference_progress_bar(len(mix)*len(mix_waves), is_match_mix=is_match_mix)
                    tar_waves = self.run_model(mix_wave, is_ckpt=is_ckpt, is_match_mix=is_match_mix)
                    tar_waves_.append(tar_waves)
                tar_waves_ = np.vstack(tar_waves_)[:, :, self.trim:-self.trim] if is_ckpt else tar_waves_
                tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :pad]
                start = 0 if slice == 0 else self.margin
                end = None if slice == list(mix.keys())[::-1][0] or self.margin == 0 else -self.margin
                sources.append(tar_waves[:,start:end]*(1/self.adjust))
            chunked_sources.append(sources)
        sources = np.concatenate(chunked_sources, axis=-1)
        
        return sources

    def run_model(self, mix, is_ckpt=False, is_match_mix=False):
        
        spek = self.stft(mix.to(self.device))*self.adjust
        spek[:, :, :3, :] *= 0 

        if is_match_mix:
            spec_pred = spek.cpu().numpy()
        else:
            spec_pred = -self.model_run(-spek)*0.5+self.model_run(spek)*0.5 if self.is_denoise else self.model_run(spek)

        if is_ckpt:
            return self.istft(spec_pred).cpu().detach().numpy()
        else: 
            return self.istft(torch.tensor(spec_pred).to(self.device)).to(cpu)[:,:,self.trim:-self.trim].transpose(0,1).reshape(2, -1).numpy()
    
    def stft(self, x):
        x = x.reshape([-1, self.chunk_size])
        x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True,return_complex=True)
        x=torch.view_as_real(x)
        x = x.permute([0,3,1,2])
        x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,self.dim_c,self.n_bins,self.dim_t])
        return x[:,:,:self.dim_f]

    def istft(self, x, freq_pad=None):
        freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
        x = torch.cat([x, freq_pad], -2)
        x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
        x = x.permute([0,2,3,1])
        x=x.contiguous()
        x=torch.view_as_complex(x)
        x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
        return x.reshape([-1,2,self.chunk_size])

class SeperateDemucs(SeperateAttributes):        

    def seperate(self):

        samplerate = 44100
        source = None
        model_scale = None
        stem_source = None
        stem_source_secondary = None
        inst_mix = None
        inst_raw_mix = None
        raw_mix = None
        inst_source = None
        is_no_write = False
        is_no_piano_guitar = False

        if self.primary_model_name == self.model_basename and type(self.primary_sources) is dict and not self.pre_proc_model:
            self.primary_source, self.secondary_source = self.load_cached_sources()
        elif self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and not self.pre_proc_model:
            source = self.primary_sources
            self.load_cached_sources(is_4_stem_demucs=True)
        else:
            self.start_inference_console_write()

            if self.is_gpu_conversion >= 0:
                self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
            else:
                self.device = torch.device('cpu')
            
            if self.demucs_version == DEMUCS_V1:
                if str(self.model_path).endswith(".gz"):
                    self.model_path = gzip.open(self.model_path, "rb")
                klass, args, kwargs, state = torch.load(self.model_path)
                self.demucs = klass(*args, **kwargs)
                self.demucs.to(self.device) 
                self.demucs.load_state_dict(state)
            elif self.demucs_version == DEMUCS_V2:
                self.demucs = auto_load_demucs_model_v2(self.demucs_source_list, self.model_path)
                self.demucs.to(self.device) 
                self.demucs.load_state_dict(torch.load(self.model_path))
                self.demucs.eval()
            else:  
                self.demucs = HDemucs(sources=self.demucs_source_list)
                self.demucs = _gm(name=os.path.splitext(os.path.basename(self.model_path))[0], 
                                  repo=Path(os.path.dirname(self.model_path)))
                self.demucs = demucs_segments(self.segment, self.demucs)
                self.demucs.to(self.device)
                self.demucs.eval()

            if self.pre_proc_model:
                if self.primary_stem not in [VOCAL_STEM, INST_STEM]:
                    is_no_write = True
                    self.write_to_console(DONE, base_text='')
                    mix_no_voc = process_secondary_model(self.pre_proc_model, self.process_data, is_pre_proc_model=True)
                    inst_mix, inst_raw_mix, inst_samplerate = prepare_mix(mix_no_voc[INST_STEM], self.chunks_demucs, self.margin_demucs)
                    self.process_iteration()
                    self.running_inference_console_write(is_no_write=is_no_write)
                    inst_source = self.demix_demucs(inst_mix)
                    inst_source = self.run_mixer(inst_raw_mix, inst_source)
                    self.process_iteration()

            self.running_inference_console_write(is_no_write=is_no_write) if not self.pre_proc_model else None
            mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs)
            
            if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and self.pre_proc_model:
                source = self.primary_sources
            else:
                source = self.demix_demucs(mix)
                source = self.run_mixer(raw_mix, source)
            
            self.write_to_console(DONE, base_text='')
            
            del self.demucs
            torch.cuda.empty_cache()
            
        if isinstance(inst_source, np.ndarray):
            source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[VOCAL_STEM]], source[self.demucs_source_map[VOCAL_STEM]])
            inst_source[self.demucs_source_map[VOCAL_STEM]] = source_reshape
            source = inst_source

        if isinstance(source, np.ndarray):
            if len(source) == 2:
                self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER
            else:
                self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER if len(source) == 6 else DEMUCS_4_SOURCE_MAPPER

                if len(source) == 6 and self.process_data['is_ensemble_master'] or len(source) == 6 and self.is_secondary_model:
                    is_no_piano_guitar = True
                    six_stem_other_source = list(source)
                    six_stem_other_source = [i for n, i in enumerate(source) if n in [self.demucs_source_map[OTHER_STEM], self.demucs_source_map[GUITAR_STEM], self.demucs_source_map[PIANO_STEM]]]
                    other_source = np.zeros_like(six_stem_other_source[0])
                    for i in six_stem_other_source:
                        other_source += i
                    source_reshape = spec_utils.reshape_sources(source[self.demucs_source_map[OTHER_STEM]], other_source)
                    source[self.demucs_source_map[OTHER_STEM]] = source_reshape

        if (self.demucs_stems == ALL_STEMS and not self.process_data['is_ensemble_master']) or self.is_4_stem_ensemble:
            self.cache_source(source)
            
            for stem_name, stem_value in self.demucs_source_map.items():
                if self.is_secondary_model_activated and not self.is_secondary_model and not stem_value >= 4:
                    if self.secondary_model_4_stem[stem_value]:
                        model_scale = self.secondary_model_4_stem_scale[stem_value]
                        stem_source_secondary = process_secondary_model(self.secondary_model_4_stem[stem_value], self.process_data, main_model_primary_stem_4_stem=stem_name, is_4_stem_demucs=True)
                        if isinstance(stem_source_secondary, np.ndarray):
                            stem_source_secondary = stem_source_secondary[1 if self.secondary_model_4_stem[stem_value].demucs_stem_count == 2 else stem_value]
                            stem_source_secondary = spec_utils.normalize(stem_source_secondary, self.is_normalization).T
                        elif type(stem_source_secondary) is dict:
                            stem_source_secondary = stem_source_secondary[stem_name]
                            
                stem_source_secondary = None if stem_value >= 4 else stem_source_secondary
                self.write_to_console(f'{SAVING_STEM[0]}{stem_name}{SAVING_STEM[1]}') if not self.is_secondary_model else None
                stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem_name}).wav')
                stem_source = spec_utils.normalize(source[stem_value], self.is_normalization).T
                self.write_audio(stem_path, stem_source, samplerate, secondary_model_source=stem_source_secondary, model_scale=model_scale)

            if self.is_secondary_model:    
                return source
        else:
            if self.is_secondary_model_activated:
                if self.secondary_model:
                    self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)

            if not self.is_secondary_stem_only:
                self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
                primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
                if not isinstance(self.primary_source, np.ndarray):
                    self.primary_source = spec_utils.normalize(source[self.demucs_source_map[self.primary_stem]], self.is_normalization).T
                self.primary_source_map = {self.primary_stem: self.primary_source}
                self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)

            if not self.is_primary_stem_only:
                def secondary_save(sec_stem_name, source, raw_mixture=None, is_inst_mixture=False):
                    secondary_source = self.secondary_source if not is_inst_mixture else None
                    self.write_to_console(f'{SAVING_STEM[0]}{sec_stem_name}{SAVING_STEM[1]}') if not self.is_secondary_model else None
                    secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({sec_stem_name}).wav')
                    secondary_source_secondary = None
                    
                    if not isinstance(secondary_source, np.ndarray):
                        if self.is_demucs_combine_stems:
                            source = list(source)
                            if is_inst_mixture:
                                source = [i for n, i in enumerate(source) if not n in [self.demucs_source_map[self.primary_stem], self.demucs_source_map[VOCAL_STEM]]]
                            else:
                                source.pop(self.demucs_source_map[self.primary_stem])
                                
                            source = source[:len(source) - 2] if is_no_piano_guitar else source
                            secondary_source = np.zeros_like(source[0])
                            for i in source:
                                secondary_source += i
                            secondary_source = spec_utils.normalize(secondary_source, self.is_normalization).T
                        else:
                            if not isinstance(raw_mixture, np.ndarray):
                                raw_mixture = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs, is_missing_mix=True)
       
                            secondary_source, raw_mixture = spec_utils.normalize_two_stem(source[self.demucs_source_map[self.primary_stem]], raw_mixture, self.is_normalization)
                            
                            if self.is_invert_spec:
                                secondary_source = spec_utils.invert_stem(raw_mixture, secondary_source)
                            else:
                                raw_mixture = spec_utils.reshape_sources(secondary_source, raw_mixture)
                                secondary_source = (-secondary_source.T+raw_mixture.T)
                            
                    if not is_inst_mixture:
                        self.secondary_source = secondary_source
                        secondary_source_secondary = self.secondary_source_secondary
                        self.secondary_source_map = {self.secondary_stem: self.secondary_source}

                    self.write_audio(secondary_stem_path, secondary_source, samplerate, secondary_source_secondary)

                secondary_save(self.secondary_stem, source, raw_mixture=raw_mix)
                
                if self.is_demucs_pre_proc_model_inst_mix and self.pre_proc_model and not self.is_4_stem_ensemble:
                    secondary_save(f"{self.secondary_stem} {INST_STEM}", source, raw_mixture=inst_raw_mix, is_inst_mixture=True)

            secondary_sources = {**self.primary_source_map, **self.secondary_source_map}

            self.cache_source(secondary_sources)
            
            if self.is_secondary_model:    
                return secondary_sources
    
    def demix_demucs(self, mix):
        processed = {}

        set_progress_bar = None if self.is_chunk_demucs else self.set_progress_bar

        for nmix in mix:
            self.progress_value += 1
            self.set_progress_bar(0.1, (0.8/len(mix)*self.progress_value)) if self.is_chunk_demucs else None
            cmix = mix[nmix]
            cmix = torch.tensor(cmix, dtype=torch.float32)
            ref = cmix.mean(0)        
            cmix = (cmix - ref.mean()) / ref.std()
            mix_infer = cmix 
            
            with torch.no_grad():
                if self.demucs_version == DEMUCS_V1:
                    sources = apply_model_v1(self.demucs, 
                                                mix_infer.to(self.device), 
                                                self.shifts, 
                                                self.is_split_mode,
                                                set_progress_bar=set_progress_bar)
                elif self.demucs_version == DEMUCS_V2:
                    sources = apply_model_v2(self.demucs, 
                                                mix_infer.to(self.device), 
                                                self.shifts,
                                                self.is_split_mode,
                                                self.overlap,
                                                set_progress_bar=set_progress_bar)
                else:
                    sources = apply_model(self.demucs, 
                                            mix_infer[None], 
                                            self.shifts,
                                            self.is_split_mode,
                                            self.overlap,
                                            static_shifts=1 if self.shifts == 0 else self.shifts,
                                            set_progress_bar=set_progress_bar,
                                            device=self.device)[0]
            
            sources = (sources * ref.std() + ref.mean()).cpu().numpy()
            sources[[0,1]] = sources[[1,0]]
            start = 0 if nmix == 0 else self.margin_demucs
            end = None if nmix == list(mix.keys())[::-1][0] else -self.margin_demucs
            if self.margin_demucs == 0:
                end = None
            processed[nmix] = sources[:,:,start:end].copy()
            sources = list(processed.values())
        sources = np.concatenate(sources, axis=-1)
                        
        return sources

class SeperateVR(SeperateAttributes):        

    def seperate(self):
        if self.primary_model_name == self.model_basename and self.primary_sources:
            self.primary_source, self.secondary_source = self.load_cached_sources()
        else:
            self.start_inference_console_write()
            if self.is_gpu_conversion >= 0:
                if OPERATING_SYSTEM == 'Darwin':
                    device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
                else:
                    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
            else:
                device = torch.device('cpu')

            nn_arch_sizes = [
                31191, # default
                33966, 56817, 123821, 123812, 129605, 218409, 537238, 537227]
            vr_5_1_models = [56817, 218409]
            model_size = math.ceil(os.stat(self.model_path).st_size / 1024)
            nn_arch_size = min(nn_arch_sizes, key=lambda x:abs(x-model_size))

            if nn_arch_size in vr_5_1_models or self.is_vr_51_model:
                self.model_run = nets_new.CascadedNet(self.mp.param['bins'] * 2, nn_arch_size, nout=self.model_capacity[0], nout_lstm=self.model_capacity[1])
            else:
                self.model_run = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_arch_size)
                            
            self.model_run.load_state_dict(torch.load(self.model_path, map_location=cpu)) 
            self.model_run.to(device) 

            self.running_inference_console_write()
                        
            y_spec, v_spec = self.inference_vr(self.loading_mix(), device, self.aggressiveness)
            self.write_to_console(DONE, base_text='')
            
        if self.is_secondary_model_activated:
            if self.secondary_model:
                self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)

        if not self.is_secondary_stem_only:
            self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
            primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
            if not isinstance(self.primary_source, np.ndarray):
                self.primary_source = spec_utils.normalize(self.spec_to_wav(y_spec), self.is_normalization).T
                if not self.model_samplerate == 44100:
                    self.primary_source = librosa.resample(self.primary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
                
            self.primary_source_map = {self.primary_stem: self.primary_source}
            
            self.write_audio(primary_stem_path, self.primary_source, 44100, self.secondary_source_primary)

        if not self.is_primary_stem_only:
            self.write_to_console(f'{SAVING_STEM[0]}{self.secondary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
            secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
            if not isinstance(self.secondary_source, np.ndarray):
                self.secondary_source = self.spec_to_wav(v_spec)
                self.secondary_source = spec_utils.normalize(self.spec_to_wav(v_spec), self.is_normalization).T
                if not self.model_samplerate == 44100:
                    self.secondary_source = librosa.resample(self.secondary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
            
            self.secondary_source_map = {self.secondary_stem: self.secondary_source}
            
            self.write_audio(secondary_stem_path, self.secondary_source, 44100, self.secondary_source_secondary)
            
        torch.cuda.empty_cache()
        secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
        self.cache_source(secondary_sources)

        if self.is_secondary_model:
            return secondary_sources
            
    def loading_mix(self):

        X_wave, X_spec_s = {}, {}
        
        bands_n = len(self.mp.param['band'])
        
        for d in range(bands_n, 0, -1):        
            bp = self.mp.param['band'][d]
        
            if OPERATING_SYSTEM == 'Darwin':
                wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type']
            else:
                wav_resolution = bp['res_type']
        
            if d == bands_n: # high-end band
                X_wave[d], _ = librosa.load(self.audio_file, bp['sr'], False, dtype=np.float32, res_type=wav_resolution)
                    
                if not np.any(X_wave[d]) and self.audio_file.endswith('.mp3'):
                    X_wave[d] = rerun_mp3(self.audio_file, bp['sr'])

                if X_wave[d].ndim == 1:
                    X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
            else: # lower bands
                X_wave[d] = librosa.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution)
                
            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], 
                                                            self.mp.param['mid_side_b2'], self.mp.param['reverse'])
            
            if d == bands_n and self.high_end_process != 'none':
                self.input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
                self.input_high_end = X_spec_s[d][:, bp['n_fft']//2-self.input_high_end_h:bp['n_fft']//2, :]

        X_spec = spec_utils.combine_spectrograms(X_spec_s, self.mp)
        
        del X_wave, X_spec_s

        return X_spec

    def inference_vr(self, X_spec, device, aggressiveness):
        def _execute(X_mag_pad, roi_size):
            X_dataset = []
            patches = (X_mag_pad.shape[2] - 2 * self.model_run.offset) // roi_size
            total_iterations = patches//self.batch_size if not self.is_tta else (patches//self.batch_size)*2
            for i in range(patches):
                start = i * roi_size
                X_mag_window = X_mag_pad[:, :, start:start + self.window_size]
                X_dataset.append(X_mag_window)

            X_dataset = np.asarray(X_dataset)
            self.model_run.eval()
            with torch.no_grad():
                mask = []
                for i in range(0, patches, self.batch_size):
                    self.progress_value += 1
                    if self.progress_value >= total_iterations:
                        self.progress_value = total_iterations
                    self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
                    X_batch = X_dataset[i: i + self.batch_size]
                    X_batch = torch.from_numpy(X_batch).to(device)
                    pred = self.model_run.predict_mask(X_batch)
                    if not pred.size()[3] > 0:
                        raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
                    pred = pred.detach().cpu().numpy()
                    pred = np.concatenate(pred, axis=2)
                    mask.append(pred)
                if len(mask) == 0:
                    raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
                
                mask = np.concatenate(mask, axis=2)
            return mask

        def postprocess(mask, X_mag, X_phase):
            
            is_non_accom_stem = False
            for stem in NON_ACCOM_STEMS:
                if stem == self.primary_stem:
                    is_non_accom_stem = True
                    
            mask = spec_utils.adjust_aggr(mask, is_non_accom_stem, aggressiveness)

            if self.is_post_process:
                mask = spec_utils.merge_artifacts(mask, thres=self.post_process_threshold)

            y_spec = mask * X_mag * np.exp(1.j * X_phase)
            v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
        
            return y_spec, v_spec
        X_mag, X_phase = spec_utils.preprocess(X_spec)
        n_frame = X_mag.shape[2]
        pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, self.model_run.offset)
        X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
        X_mag_pad /= X_mag_pad.max()
        mask = _execute(X_mag_pad, roi_size)
        
        if self.is_tta:
            pad_l += roi_size // 2
            pad_r += roi_size // 2
            X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
            X_mag_pad /= X_mag_pad.max()
            mask_tta = _execute(X_mag_pad, roi_size)
            mask_tta = mask_tta[:, :, roi_size // 2:]
            mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5
        else:
            mask = mask[:, :, :n_frame]

        y_spec, v_spec = postprocess(mask, X_mag, X_phase)
        
        return y_spec, v_spec

    def spec_to_wav(self, spec):
        
        if self.high_end_process.startswith('mirroring'):        
            input_high_end_ = spec_utils.mirroring(self.high_end_process, spec, self.input_high_end, self.mp)
            wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, self.input_high_end_h, input_high_end_)       
        else:
            wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp)
            
        return wav
   
def process_secondary_model(secondary_model: ModelData, process_data, main_model_primary_stem_4_stem=None, is_4_stem_demucs=False, main_process_method=None, is_pre_proc_model=False):
        
    if not is_pre_proc_model:
        process_iteration = process_data['process_iteration']
        process_iteration()
    
    if secondary_model.process_method == VR_ARCH_TYPE:
        seperator = SeperateVR(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
    if secondary_model.process_method == MDX_ARCH_TYPE:
        seperator = SeperateMDX(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
    if secondary_model.process_method == DEMUCS_ARCH_TYPE:
        seperator = SeperateDemucs(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
        
    secondary_sources = seperator.seperate()

    if type(secondary_sources) is dict and not is_4_stem_demucs and not is_pre_proc_model:
        return gather_sources(secondary_model.primary_model_primary_stem, STEM_PAIR_MAPPER[secondary_model.primary_model_primary_stem], secondary_sources)
    else:
        return secondary_sources
    
def gather_sources(primary_stem_name, secondary_stem_name, secondary_sources: dict):
    
    source_primary = False
    source_secondary = False

    for key, value in secondary_sources.items():
        if key in primary_stem_name:
            source_primary = value
        if key in secondary_stem_name:
            source_secondary = value

    return source_primary, source_secondary
        
def prepare_mix(mix, chunk_set, margin_set, mdx_net_cut=False, is_missing_mix=False):

    audio_path = mix
    samplerate = 44100

    if not isinstance(mix, np.ndarray):
        mix, samplerate = librosa.load(mix, mono=False, sr=44100)
    else:
        mix = mix.T

    if not np.any(mix) and audio_path.endswith('.mp3'):
        mix = rerun_mp3(audio_path)

    if mix.ndim == 1:
        mix = np.asfortranarray([mix,mix])

    def get_segmented_mix(chunk_set=chunk_set):
        segmented_mix = {}
        
        samples = mix.shape[-1]
        margin = margin_set
        chunk_size = chunk_set*44100
        assert not margin == 0, 'margin cannot be zero!'
        
        if margin > chunk_size:
            margin = chunk_size
        if chunk_set == 0 or samples < chunk_size:
            chunk_size = samples
        
        counter = -1
        for skip in range(0, samples, chunk_size):
            counter+=1
            s_margin = 0 if counter == 0 else margin
            end = min(skip+chunk_size+margin, samples)
            start = skip-s_margin
            segmented_mix[skip] = mix[:,start:end].copy()
            if end == samples:
                break
            
        return segmented_mix

    if is_missing_mix:
        return mix
    else:
        segmented_mix = get_segmented_mix()
        raw_mix = get_segmented_mix(chunk_set=0) if mdx_net_cut else mix
        return segmented_mix, raw_mix, samplerate

def rerun_mp3(audio_file, sample_rate=44100):

    with audioread.audio_open(audio_file) as f:
        track_length = int(f.duration)

    return librosa.load(audio_file, duration=track_length, mono=False, sr=sample_rate)[0]

def save_format(audio_path, save_format, mp3_bit_set):
    
    if not save_format == WAV:
        
        if OPERATING_SYSTEM == 'Darwin':
            FFMPEG_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ffmpeg')
            pydub.AudioSegment.converter = FFMPEG_PATH
        
        musfile = pydub.AudioSegment.from_wav(audio_path)
        
        if save_format == FLAC:
            audio_path_flac = audio_path.replace(".wav", ".flac")
            musfile.export(audio_path_flac, format="flac")  
        
        if save_format == MP3:
            audio_path_mp3 = audio_path.replace(".wav", ".mp3")
            musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set)
        
        try:
            os.remove(audio_path)
        except Exception as e:
            print(e)