oItsMineZ's picture
Upload 75 files
fa4dd2b verified
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Utilities to save and load models.
"""
from contextlib import contextmanager
import functools
import hashlib
import inspect
import io
from pathlib import Path
import warnings
from omegaconf import OmegaConf
from diffq import DiffQuantizer, UniformQuantizer, restore_quantized_state
import torch
def get_quantizer(model, args, optimizer=None):
"""Return the quantizer given the XP quantization args."""
quantizer = None
if args.diffq:
quantizer = DiffQuantizer(
model, min_size=args.min_size, group_size=args.group_size)
if optimizer is not None:
quantizer.setup_optimizer(optimizer)
elif args.qat:
quantizer = UniformQuantizer(
model, bits=args.qat, min_size=args.min_size)
return quantizer
def load_model(path_or_package, strict=False):
"""Load a model from the given serialized model, either given as a dict (already loaded)
or a path to a file on disk."""
if isinstance(path_or_package, dict):
package = path_or_package
elif isinstance(path_or_package, (str, Path)):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
path = path_or_package
package = torch.load(path, 'cpu')
else:
raise ValueError(f"Invalid type for {path_or_package}.")
klass = package["klass"]
args = package["args"]
kwargs = package["kwargs"]
if strict:
model = klass(*args, **kwargs)
else:
sig = inspect.signature(klass)
for key in list(kwargs):
if key not in sig.parameters:
warnings.warn("Dropping inexistant parameter " + key)
del kwargs[key]
model = klass(*args, **kwargs)
state = package["state"]
set_state(model, state)
return model
def get_state(model, quantizer, half=False):
"""Get the state from a model, potentially with quantization applied.
If `half` is True, model are stored as half precision, which shouldn't impact performance
but half the state size."""
if quantizer is None:
dtype = torch.half if half else None
state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()}
else:
state = quantizer.get_quantized_state()
state['__quantized'] = True
return state
def set_state(model, state, quantizer=None):
"""Set the state on a given model."""
if state.get('__quantized'):
if quantizer is not None:
quantizer.restore_quantized_state(model, state['quantized'])
else:
restore_quantized_state(model, state)
else:
model.load_state_dict(state)
return state
def save_with_checksum(content, path):
"""Save the given value on disk, along with a sha256 hash.
Should be used with the output of either `serialize_model` or `get_state`."""
buf = io.BytesIO()
torch.save(content, buf)
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
path = path.parent / (path.stem + "-" + sig + path.suffix)
path.write_bytes(buf.getvalue())
def serialize_model(model, training_args, quantizer=None, half=True):
args, kwargs = model._init_args_kwargs
klass = model.__class__
state = get_state(model, quantizer, half)
return {
'klass': klass,
'args': args,
'kwargs': kwargs,
'state': state,
'training_args': OmegaConf.to_container(training_args, resolve=True),
}
def copy_state(state):
return {k: v.cpu().clone() for k, v in state.items()}
@contextmanager
def swap_state(model, state):
"""
Context manager that swaps the state of a model, e.g:
# model is in old state
with swap_state(model, new_state):
# model in new state
# model back to old state
"""
old_state = copy_state(model.state_dict())
model.load_state_dict(state, strict=False)
try:
yield
finally:
model.load_state_dict(old_state)
def capture_init(init):
@functools.wraps(init)
def __init__(self, *args, **kwargs):
self._init_args_kwargs = (args, kwargs)
init(self, *args, **kwargs)
return __init__