File size: 59,717 Bytes
43cd37c
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
43cd37c
 
c5b0bb7
 
43cd37c
 
 
 
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
43cd37c
c5b0bb7
43cd37c
c5b0bb7
43cd37c
 
c5b0bb7
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
43cd37c
c5b0bb7
43cd37c
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
c5b0bb7
43cd37c
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
c5b0bb7
 
43cd37c
 
 
 
 
 
 
 
c5b0bb7
43cd37c
c5b0bb7
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
43cd37c
c5b0bb7
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b0bb7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
# Video_transcription_tab.py
# Description: This file contains the code for the video transcription tab in the Gradio UI.
#
# Imports
import json
import logging
import os
from datetime import datetime
#
# External Imports
import gradio as gr
import yt_dlp

from App_Function_Libraries.Chunk_Lib import improved_chunking_process
#
# Local Imports
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, \
    check_media_and_whisper_model, check_existing_media, update_media_content_with_version, list_prompts
from App_Function_Libraries.Gradio_UI.Gradio_Shared import whisper_models, update_user_prompt
from App_Function_Libraries.Gradio_UI.Gradio_Shared import error_handler
from App_Function_Libraries.Summarization.Summarization_General_Lib import perform_transcription, perform_summarization, \
    save_transcription_and_summary
from App_Function_Libraries.Utils.Utils import convert_to_seconds, safe_read_file, format_transcription, \
    create_download_directory, generate_unique_identifier, extract_text_from_segments, default_api_endpoint, \
    global_api_endpoints, format_api_name
from App_Function_Libraries.Video_DL_Ingestion_Lib import parse_and_expand_urls, extract_metadata, download_video
from App_Function_Libraries.Benchmarks_Evaluations.ms_g_eval import run_geval
# Import metrics logging
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
#
#######################################################################################################################
#
# Functions:

def create_video_transcription_tab():
    try:
        default_value = None
        if default_api_endpoint:
            if default_api_endpoint in global_api_endpoints:
                default_value = format_api_name(default_api_endpoint)
            else:
                logging.warning(f"Default API endpoint '{default_api_endpoint}' not found in global_api_endpoints")
    except Exception as e:
        logging.error(f"Error setting default API endpoint: {str(e)}")
        default_value = None
    with gr.TabItem("Video Transcription + Summarization", visible=True):
        gr.Markdown("# Transcribe & Summarize Videos from URLs")
        with gr.Row():
            gr.Markdown("""Follow this project at [tldw - GitHub](https://github.com/rmusser01/tldw)""")
        with gr.Row():
            gr.Markdown(
                """If you're wondering what all this is, please see the 'Introduction/Help' tab up above for more detailed information and how to obtain an API Key.""")
        with gr.Row():
            with gr.Column():
                url_input = gr.Textbox(label="URL(s) (Mandatory)",
                                       placeholder="Enter video URLs here, one per line. Supports YouTube, Vimeo, other video sites and Youtube playlists.",
                                       lines=5)
                video_file_input = gr.File(label="Upload Video File (Optional)", file_types=["video/*"])
                diarize_input = gr.Checkbox(label="Enable Speaker Diarization", value=False)
                vad_checkbox = gr.Checkbox(label="Enable Voice-Audio-Detection(VAD)", value=True)
                whisper_model_input = gr.Dropdown(choices=whisper_models, value="medium", label="Whisper Model")

                with gr.Row():
                    custom_prompt_checkbox = gr.Checkbox(label="Use a Custom Prompt",
                                                         value=False,
                                                         visible=True)
                    preset_prompt_checkbox = gr.Checkbox(label="Use a pre-set Prompt",
                                                         value=False,
                                                         visible=True)

                # Initialize state variables for pagination
                current_page_state = gr.State(value=1)
                total_pages_state = gr.State(value=1)

                with gr.Row():
                    # Add pagination controls
                    preset_prompt = gr.Dropdown(label="Select Preset Prompt",
                                                choices=[],
                                                visible=False)
                with gr.Row():
                    prev_page_button = gr.Button("Previous Page", visible=False)
                    page_display = gr.Markdown("Page 1 of X", visible=False)
                    next_page_button = gr.Button("Next Page", visible=False)
                with gr.Row():
                    system_prompt_input = gr.Textbox(label="System Prompt",
                                                     value="""<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]

**Bulleted Note Creation Guidelines**



**Headings**:

- Based on referenced topics, not categories like quotes or terms

- Surrounded by **bold** formatting 

- Not listed as bullet points

- No space between headings and list items underneath



**Emphasis**:

- **Important terms** set in bold font

- **Text ending in a colon**: also bolded



**Review**:

- Ensure adherence to specified format

- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]

""",
                                                     lines=3,
                                                     visible=False,
                                                     interactive=True)
                with gr.Row():
                    custom_prompt_input = gr.Textbox(label="Custom Prompt",
                                                     placeholder="Enter custom prompt here",
                                                     lines=3,
                                                     visible=False)

                custom_prompt_checkbox.change(
                    fn=lambda x: (gr.update(visible=x, interactive=x), gr.update(visible=x, interactive=x)),
                    inputs=[custom_prompt_checkbox],
                    outputs=[custom_prompt_input, system_prompt_input]
                )

                def on_preset_prompt_checkbox_change(is_checked):
                    if is_checked:
                        prompts, total_pages, current_page = list_prompts(page=1, per_page=20)
                        page_display_text = f"Page {current_page} of {total_pages}"
                        return (
                            gr.update(visible=True, interactive=True, choices=prompts),  # preset_prompt
                            gr.update(visible=True),  # prev_page_button
                            gr.update(visible=True),  # next_page_button
                            gr.update(value=page_display_text, visible=True),  # page_display
                            current_page,  # current_page_state
                            total_pages  # total_pages_state
                        )
                    else:
                        return (
                            gr.update(visible=False, interactive=False),  # preset_prompt
                            gr.update(visible=False),  # prev_page_button
                            gr.update(visible=False),  # next_page_button
                            gr.update(visible=False),  # page_display
                            1,  # current_page_state
                            1   # total_pages_state
                        )

                preset_prompt_checkbox.change(
                    fn=on_preset_prompt_checkbox_change,
                    inputs=[preset_prompt_checkbox],
                    outputs=[preset_prompt, prev_page_button, next_page_button, page_display, current_page_state, total_pages_state]
                )

                def on_prev_page_click(current_page, total_pages):
                    new_page = max(current_page - 1, 1)
                    prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
                    page_display_text = f"Page {current_page} of {total_pages}"
                    return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

                prev_page_button.click(
                    fn=on_prev_page_click,
                    inputs=[current_page_state, total_pages_state],
                    outputs=[preset_prompt, page_display, current_page_state]
                )

                def on_next_page_click(current_page, total_pages):
                    new_page = min(current_page + 1, total_pages)
                    prompts, total_pages, current_page = list_prompts(page=new_page, per_page=20)
                    page_display_text = f"Page {current_page} of {total_pages}"
                    return gr.update(choices=prompts), gr.update(value=page_display_text), current_page

                next_page_button.click(
                    fn=on_next_page_click,
                    inputs=[current_page_state, total_pages_state],
                    outputs=[preset_prompt, page_display, current_page_state]
                )

                def update_prompts(preset_name):
                    prompts = update_user_prompt(preset_name)
                    return (
                        gr.update(value=prompts["user_prompt"], visible=True, interactive=True),
                        gr.update(value=prompts["system_prompt"], visible=True, interactive=True)
                    )

                preset_prompt.change(
                    update_prompts,
                    inputs=preset_prompt,
                    outputs=[custom_prompt_input, system_prompt_input]
                )

                # Refactored API selection dropdown
                api_name_input = gr.Dropdown(
                    choices=["None"] + [format_api_name(api) for api in global_api_endpoints],
                    value=default_value,
                    label="API for Summarization/Analysis (Optional)"
                )
                api_key_input = gr.Textbox(label="API Key (Optional - Set in Config.txt)", placeholder="Enter your API key here",
                                           type="password")
                keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
                                            value="default,no_keyword_set")
                batch_size_input = gr.Slider(minimum=1, maximum=10, value=1, step=1,
                                             label="Batch Size (Number of videos to process simultaneously)")
                timestamp_option = gr.Checkbox(label="Include Timestamps", value=True)
                keep_original_video = gr.Checkbox(label="Keep Original Video", value=False)
                # First, create a checkbox to toggle the chunking options
                chunking_options_checkbox = gr.Checkbox(label="Show Chunking Options", value=False)
                summarize_recursively = gr.Checkbox(label="Enable Recursive Summarization", value=False)
                use_cookies_input = gr.Checkbox(label="Use cookies for authenticated download", value=False)
                use_time_input = gr.Checkbox(label="Use Start and End Time", value=False)
                confab_checkbox = gr.Checkbox(label="Perform Confabulation Check of Summary", value=False)
                overwrite_checkbox = gr.Checkbox(label="Overwrite Existing Media", value=False)
                with gr.Row(visible=False) as time_input_box:
                    gr.Markdown("### Start and End time")
                    with gr.Column():
                        start_time_input = gr.Textbox(label="Start Time (Optional)",
                                                      placeholder="e.g., 1:30 or 90 (in seconds)")
                        end_time_input = gr.Textbox(label="End Time (Optional)",
                                                    placeholder="e.g., 5:45 or 345 (in seconds)")

                use_time_input.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[use_time_input],
                    outputs=[time_input_box]
                )

                cookies_input = gr.Textbox(
                    label="User Session Cookies",
                    placeholder="Paste your cookies here (JSON format)",
                    lines=3,
                    visible=False
                )

                use_cookies_input.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[use_cookies_input],
                    outputs=[cookies_input]
                )
                # Then, create a Box to group the chunking options
                with gr.Row(visible=False) as chunking_options_box:
                    gr.Markdown("### Chunking Options")
                    with gr.Column():
                        chunk_method = gr.Dropdown(choices=['words', 'sentences', 'paragraphs', 'tokens'],
                                                   label="Chunking Method")
                        max_chunk_size = gr.Slider(minimum=100, maximum=8000, value=400, step=1,
                                                   label="Max Chunk Size")
                        chunk_overlap = gr.Slider(minimum=0, maximum=5000, value=100, step=1, label="Chunk Overlap")
                        use_adaptive_chunking = gr.Checkbox(
                            label="Use Adaptive Chunking (Adjust chunking based on text complexity)")
                        use_multi_level_chunking = gr.Checkbox(label="Use Multi-level Chunking")
                        chunk_language = gr.Dropdown(choices=['english', 'french', 'german', 'spanish'],
                                                     label="Chunking Language")

                # Add JavaScript to toggle the visibility of the chunking options box
                chunking_options_checkbox.change(
                    fn=lambda x: gr.update(visible=x),
                    inputs=[chunking_options_checkbox],
                    outputs=[chunking_options_box]
                )
                process_button = gr.Button("Process Videos")

            with gr.Column():
                progress_output = gr.Textbox(label="Progress")
                error_output = gr.Textbox(label="Errors", visible=False)
                results_output = gr.HTML(label="Results")
                confabulation_output = gr.Textbox(label="Confabulation Check Results", visible=False)
                download_transcription = gr.File(label="Download All Transcriptions as JSON")
                download_summary = gr.File(label="Download All Summaries as Text")

            @error_handler
            def process_videos_with_error_handling(inputs, start_time, end_time, diarize, vad_use, whisper_model,

                                                   custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,

                                                   chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,

                                                   use_multi_level_chunking, chunk_language, api_name,

                                                   api_key, keywords, use_cookies, cookies, batch_size,

                                                   timestamp_option, keep_original_video, summarize_recursively, overwrite_existing=False,

                                                   progress: gr.Progress = gr.Progress()) -> tuple:
                try:
                    # Start overall processing timer
                    proc_start_time = datetime.now()
                    logging.info("Entering process_videos_with_error_handling")
                    logging.info(f"Received inputs: {inputs}")

                    if not inputs:
                        raise ValueError("No inputs provided")

                    logging.debug("Input(s) is(are) valid")

                    # Ensure batch_size is an integer
                    try:
                        batch_size = int(batch_size)
                    except (ValueError, TypeError):
                        batch_size = 1  # Default to processing one video at a time if invalid

                    # Separate URLs and local files
                    urls = [input for input in inputs if
                            isinstance(input, str) and input.startswith(('http://', 'https://'))]
                    local_files = [input for input in inputs if
                                   isinstance(input, str) and not input.startswith(('http://', 'https://'))]

                    # Parse and expand URLs if there are any
                    expanded_urls = parse_and_expand_urls(urls) if urls else []

                    valid_local_files = []
                    invalid_local_files = []

                    for file_path in local_files:
                        if os.path.exists(file_path):
                            valid_local_files.append(file_path)
                        else:
                            invalid_local_files.append(file_path)
                            error_message = f"Local file not found: {file_path}"
                            logging.error(error_message)

                    if invalid_local_files:
                        logging.warning(f"Found {len(invalid_local_files)} invalid local file paths")
                        # FIXME - Add more complete error handling for invalid local files

                    all_inputs = expanded_urls + valid_local_files
                    logging.info(f"Total valid inputs to process: {len(all_inputs)} "
                                 f"({len(expanded_urls)} URLs, {len(valid_local_files)} local files)")

                    all_inputs = expanded_urls + local_files
                    logging.info(f"Total inputs to process: {len(all_inputs)}")
                    results = []
                    errors = []
                    results_html = ""
                    all_transcriptions = {}
                    all_summaries = ""

                    # Start timing
                    start_proc = datetime.now()

                    for i in range(0, len(all_inputs), batch_size):
                        batch = all_inputs[i:i + batch_size]
                        batch_results = []

                        for input_item in batch:
                            # Start individual video processing timer
                            video_start_time = datetime.now()
                            try:
                                start_seconds = convert_to_seconds(start_time)
                                end_seconds = convert_to_seconds(end_time) if end_time else None

                                logging.info(f"Attempting to extract metadata for {input_item}")

                                if input_item.startswith(('http://', 'https://')):
                                    logging.info(f"Attempting to extract metadata for URL: {input_item}")
                                    video_metadata = extract_metadata(input_item, use_cookies, cookies)
                                    if not video_metadata:
                                        raise ValueError(f"Failed to extract metadata for {input_item}")
                                else:
                                    logging.info(f"Processing local file: {input_item}")
                                    video_metadata = {"title": os.path.basename(input_item), "url": input_item}

                                chunk_options = {
                                    'method': chunk_method,
                                    'max_size': max_chunk_size,
                                    'overlap': chunk_overlap,
                                    'adaptive': use_adaptive_chunking,
                                    'multi_level': use_multi_level_chunking,
                                    'language': chunk_language
                                } if chunking_options_checkbox else None

                                if custom_prompt_checkbox:
                                    custom_prompt = custom_prompt
                                else:
                                    custom_prompt = ("""

                                    <s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]

                                        **Bulleted Note Creation Guidelines**



                                        **Headings**:

                                        - Based on referenced topics, not categories like quotes or terms

                                        - Surrounded by **bold** formatting 

                                        - Not listed as bullet points

                                        - No space between headings and list items underneath



                                        **Emphasis**:

                                        - **Important terms** set in bold font

                                        - **Text ending in a colon**: also bolded



                                        **Review**:

                                        - Ensure adherence to specified format

                                        - Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]

                                    """)

                                logging.debug("Gradio_Related.py: process_url_with_metadata being called")
                                # FIXME - Would assume this is where the multi-processing for recursive summarization would occur
                                result = process_url_with_metadata(
                                    input_item, 2, whisper_model,
                                    custom_prompt,
                                    start_seconds, api_name, api_key,
                                    vad_use, False, False, summarize_recursively, 0.01, None, keywords, None, diarize,
                                    end_time=end_seconds,
                                    include_timestamps=timestamp_option,
                                    metadata=video_metadata,
                                    use_chunking=chunking_options_checkbox,
                                    chunk_options=chunk_options,
                                    keep_original_video=keep_original_video,
                                    current_whisper_model=whisper_model,
                                    overwrite_existing=overwrite_existing
                                )

                                if result[0] is None:
                                    error_message = "Processing failed without specific error"
                                    batch_results.append(
                                        (input_item, error_message, "Error", video_metadata, None, None))
                                    errors.append(f"Error processing {input_item}: {error_message}")

                                    # Log failure metric
                                    log_counter(
                                        metric_name="videos_failed_total",
                                        labels={"whisper_model": whisper_model, "api_name": api_name},
                                        value=1
                                    )

                                else:
                                    url, transcription, summary, json_file, summary_file, result_metadata = result
                                    if transcription is None:
                                        error_message = f"Processing failed for {input_item}: Transcription is None"
                                        batch_results.append(
                                            (input_item, error_message, "Error", result_metadata, None, None))
                                        errors.append(error_message)

                                        # Log failure metric
                                        log_counter(
                                            metric_name="videos_failed_total",
                                            labels={"whisper_model": whisper_model, "api_name": api_name},
                                            value=1
                                        )

                                    else:
                                        batch_results.append(
                                            (input_item, transcription, "Success", result_metadata, json_file,
                                             summary_file))

                                        # Log success metric
                                        log_counter(
                                            metric_name="videos_processed_total",
                                            labels={"whisper_model": whisper_model, "api_name": api_name},
                                            value=1
                                        )

                                        # Calculate processing time
                                        video_end_time = datetime.now()
                                        processing_time = (video_end_time - video_start_time).total_seconds()
                                        log_histogram(
                                            metric_name="video_processing_time_seconds",
                                            value=processing_time,
                                            labels={"whisper_model": whisper_model, "api_name": api_name}
                                        )

                                        # Log transcription and summary metrics
                                        if transcription:
                                            log_counter(
                                                metric_name="transcriptions_generated_total",
                                                labels={"whisper_model": whisper_model},
                                                value=1
                                            )
                                        if summary:
                                            log_counter(
                                                metric_name="summaries_generated_total",
                                                labels={"whisper_model": whisper_model},
                                                value=1
                                            )

                            except Exception as e:
                                # Log failure
                                log_counter(
                                    metric_name="videos_failed_total",
                                    labels={"whisper_model": whisper_model, "api_name": api_name},
                                    value=1
                                )
                                error_message = f"Error processing {input_item}: {str(e)}"
                                logging.error(error_message, exc_info=True)
                                batch_results.append((input_item, error_message, "Error", {}, None, None))
                                errors.append(error_message)

                        results.extend(batch_results)
                        logging.debug(f"Processed {len(batch_results)} videos in batch")
                        if isinstance(progress, gr.Progress):
                            progress((i + len(batch)) / len(all_inputs),
                                     f"Processed {i + len(batch)}/{len(all_inputs)} videos")

                    # Generate HTML for results
                    logging.debug(f"Generating HTML for {len(results)} results")
                    for url, transcription, status, metadata, json_file, summary_file in results:
                        if status == "Success":
                            title = metadata.get('title', 'Unknown Title')

                            # Check if transcription is a string (which it should be now)
                            if isinstance(transcription, str):
                                # Split the transcription into metadata and actual transcription
                                parts = transcription.split('\n\n', 1)
                                if len(parts) == 2:
                                    metadata_text, transcription_text = parts
                                else:
                                    metadata_text = "Metadata not found"
                                    transcription_text = transcription
                            else:
                                metadata_text = "Metadata format error"
                                transcription_text = "Transcription format error"

                            summary = safe_read_file(summary_file) if summary_file else "No summary available"

                            # FIXME - Add to other functions that generate HTML
                            # Format the transcription
                            formatted_transcription = format_transcription(transcription_text)
                            # Format the summary
                            formatted_summary = format_transcription(summary)

                            results_html += f"""

                            <div class="result-box">

                                <gradio-accordion>

                                    <gradio-accordion-item label="{title}">

                                        <p><strong>URL:</strong> <a href="{url}" target="_blank">{url}</a></p>

                                        <h4>Metadata:</h4>

                                        <pre>{metadata_text}</pre>

                                        <h4>Transcription:</h4>

                                        <div class="transcription" style="white-space: pre-wrap; word-wrap: break-word;">

                                            {formatted_transcription}

                                        </div>

                                        <h4>Summary:</h4>

                                        <div class="summary">{formatted_summary}</div>

                                    </gradio-accordion-item>

                                </gradio-accordion>

                            </div>

                            """
                            logging.debug(f"Transcription for {url}: {transcription[:200]}...")
                            all_transcriptions[url] = transcription
                            all_summaries += f"Title: {title}\nURL: {url}\n\n{metadata_text}\n\nTranscription:\n{transcription_text}\n\nSummary:\n{summary}\n\n---\n\n"
                        else:
                            results_html += f"""

                            <div class="result-box error">

                                <h3>Error processing {url}</h3>

                                <p>{transcription}</p>

                            </div>

                            """

                    # Save all transcriptions and summaries to files
                    logging.debug("Saving all transcriptions and summaries to files")
                    with open('all_transcriptions.json', 'w', encoding='utf-8') as f:
                        json.dump(all_transcriptions, f, indent=2, ensure_ascii=False)

                    with open('all_summaries.txt', 'w', encoding='utf-8') as f:
                        f.write(all_summaries)

                    error_summary = "\n".join(errors) if errors else "No errors occurred."

                    total_inputs = len(all_inputs)

                    # End overall processing timer
                    proc_end_time = datetime.now()
                    total_processing_time = (proc_end_time - proc_start_time).total_seconds()
                    log_histogram(
                        metric_name="total_processing_time_seconds",
                        value=total_processing_time,
                        labels={"whisper_model": whisper_model, "api_name": api_name}
                    )

                    return (
                        f"Processed {total_inputs} videos. {len(errors)} errors occurred.",
                        error_summary,
                        results_html,
                        'all_transcriptions.json',
                        'all_summaries.txt'
                    )
                except Exception as e:
                    logging.error(f"Unexpected error in process_videos_with_error_handling: {str(e)}", exc_info=True)

                    # Log unexpected failure metric
                    log_counter(
                        metric_name="videos_failed_total",
                        labels={"whisper_model": whisper_model, "api_name": api_name},
                        value=1
                    )

                    return (
                        f"An unexpected error occurred: {str(e)}",
                        str(e),
                        "<div class='result-box error'><h3>Unexpected Error</h3><p>" + str(e) + "</p></div>",
                        None,
                        None
                    )

            def process_videos_wrapper(url_input, video_file, start_time, end_time, diarize, vad_use, whisper_model,

                                       custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,

                                       chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,

                                       use_multi_level_chunking, chunk_language, summarize_recursively, api_name,

                                       api_key, keywords, use_cookies, cookies, batch_size,

                                       timestamp_option, keep_original_video, confab_checkbox, overwrite_existing=False):
                global result
                try:
                    logging.info("process_videos_wrapper(): process_videos_wrapper called")

                    # Define file paths
                    transcriptions_file = os.path.join('all_transcriptions.json')
                    summaries_file = os.path.join('all_summaries.txt')

                    # Delete existing files if they exist
                    for file_path in [transcriptions_file, summaries_file]:
                        try:
                            if os.path.exists(file_path):
                                os.remove(file_path)
                                logging.info(f"Deleted existing file: {file_path}")
                        except Exception as e:
                            logging.warning(f"Failed to delete file {file_path}: {str(e)}")

                    # Handle both URL input and file upload
                    inputs = []
                    if url_input:
                        inputs.extend([url.strip() for url in url_input.split('\n') if url.strip()])
                    if video_file is not None:
                        # Assuming video_file is a file object with a 'name' attribute
                        inputs.append(video_file.name)

                    if not inputs:
                        raise ValueError("No input provided. Please enter URLs or upload a video file.")

                    result = process_videos_with_error_handling(
                        inputs, start_time, end_time, diarize, vad_use, whisper_model,
                        custom_prompt_checkbox, custom_prompt, chunking_options_checkbox,
                        chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
                        use_multi_level_chunking, chunk_language, api_name,
                        api_key, keywords, use_cookies, cookies, batch_size,
                        timestamp_option, keep_original_video, summarize_recursively, overwrite_existing
                    )

                    confabulation_result = None
                    if confab_checkbox:
                        logging.info("Confabulation check enabled")
                        # Assuming result[1] contains the transcript and result[2] contains the summary
                        confabulation_result = run_geval(result[1], result[2], api_key, api_name)
                        logging.info(f"Simplified G-Eval result: {confabulation_result}")

                    # Ensure that result is a tuple with 5 elements
                    if not isinstance(result, tuple) or len(result) != 5:
                        raise ValueError(
                            f"process_videos_wrapper(): Expected 5 outputs, but got {len(result) if isinstance(result, tuple) else 1}")

                    # Return the confabulation result along with other outputs
                    return (*result, confabulation_result)

                except Exception as e:
                    logging.error(f"process_videos_wrapper(): Error in process_videos_wrapper: {str(e)}", exc_info=True)
                    # Return a tuple with 6 elements in case of any error (including None for simple_geval_result)
                    return (
                        f"process_videos_wrapper(): An error occurred: {str(e)}",  # progress_output
                        str(e),  # error_output
                        f"<div class='error'>Error: {str(e)}</div>",  # results_output
                        None,  # download_transcription
                        None,  # download_summary
                        None  # simple_geval_result
                    )

            # FIXME - remove dead args for process_url_with_metadata
            @error_handler
            def process_url_with_metadata(input_item, num_speakers, whisper_model, custom_prompt, offset, api_name,

                                          api_key, vad_filter, download_video_flag, download_audio,

                                          rolling_summarization,

                                          detail_level, question_box, keywords, local_file_path, diarize, end_time=None,

                                          include_timestamps=True, metadata=None, use_chunking=False,

                                          chunk_options=None, keep_original_video=False, current_whisper_model="Blank", overwrite_existing=False):

                try:
                    logging.info(f"Starting process_url_metadata for URL: {input_item}")
                    # Create download path

                    download_path = create_download_directory("Video_Downloads")
                    logging.info(f"Download path created at: {download_path}")

                    # Initialize info_dict
                    info_dict = {}

                    # Handle URL or local file
                    if os.path.isfile(input_item):
                        video_file_path = input_item
                        unique_id = generate_unique_identifier(input_item)
                        # Extract basic info from local file
                        info_dict = {
                            'webpage_url': unique_id,
                            'title': os.path.basename(input_item),
                            'description': "Local file",
                            'channel_url': None,
                            'duration': None,
                            'channel': None,
                            'uploader': None,
                            'upload_date': None
                        }
                    else:
                        # Extract video information
                        with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
                            try:
                                full_info = ydl.extract_info(input_item, download=False)

                                # Create a safe subset of info to log
                                safe_info = {
                                    'title': full_info.get('title', 'No title'),
                                    'duration': full_info.get('duration', 'Unknown duration'),
                                    'upload_date': full_info.get('upload_date', 'Unknown upload date'),
                                    'uploader': full_info.get('uploader', 'Unknown uploader'),
                                    'view_count': full_info.get('view_count', 'Unknown view count')
                                }

                                logging.debug(f"Full info extracted for {input_item}: {safe_info}")
                            except Exception as e:
                                logging.error(f"Error extracting video info: {str(e)}")
                                return None, None, None, None, None, None

                        # Filter the required metadata
                        if full_info:
                            info_dict = {
                                'webpage_url': full_info.get('webpage_url', input_item),
                                'title': full_info.get('title'),
                                'description': full_info.get('description'),
                                'channel_url': full_info.get('channel_url'),
                                'duration': full_info.get('duration'),
                                'channel': full_info.get('channel'),
                                'uploader': full_info.get('uploader'),
                                'upload_date': full_info.get('upload_date')
                            }
                            logging.debug(f"Filtered info_dict: {info_dict}")
                        else:
                            logging.error("Failed to extract video information")
                            return None, None, None, None, None, None

                        # FIXME - MAKE SURE THIS WORKS WITH LOCAL FILES
                        # FIXME - Add a toggle to force processing even if media exists
                        # Check if media already exists in the database
                        logging.info("Checking if media already exists in the database...")
                        media_exists, reason = check_media_and_whisper_model(
                            title=info_dict.get('title'),
                            url=info_dict.get('webpage_url'),
                            current_whisper_model=current_whisper_model
                        )

                        if not media_exists:
                            logging.info(
                                f"process_url_with_metadata: Media does not exist in the database. Reason: {reason}")
                        else:
                            if "same whisper model" in reason:
                                logging.info(
                                    f"process_url_with_metadata: Skipping download and processing as media exists and uses the same Whisper model. Reason: {reason}")
                                return input_item, None, None, None, None, info_dict
                            else:
                                logging.info(
                                    f"process_url_with_metadata: Media found, but with a different Whisper model. Reason: {reason}")

                        # Download video/audio
                        logging.info("Downloading video/audio...")
                        video_file_path = download_video(input_item, download_path, full_info, download_video_flag,
                                                         current_whisper_model=current_whisper_model)
                        if video_file_path is None:
                            logging.info(
                                f"process_url_with_metadata: Download skipped for {input_item}. Media might already exist or be processed.")
                            return input_item, None, None, None, None, info_dict

                    # FIXME - add check for existing media with different whisper model for local files
                    # FIXME Check to make sure this works
                    media_exists, reason = check_media_and_whisper_model(
                        title=info_dict.get('title'),
                        url=info_dict.get('webpage_url'),
                        current_whisper_model=current_whisper_model
                    )
                    if not media_exists:
                        logging.info(
                            f"process_url_with_metadata: Media does not exist in the database. Reason: {reason}")
                    else:
                        if "same whisper model" in reason:
                            logging.info(
                                f"process_url_with_metadata: Skipping download and processing as media exists and uses the same Whisper model. Reason: {reason}")
                            return input_item, None, None, None, None, info_dict
                        else:
                            same_whisper_model = True
                            logging.info(
                                f"process_url_with_metadata: Media found, but with a different Whisper model. Reason: {reason}")

                    logging.info(f"process_url_with_metadata: Processing file: {video_file_path}")

                    # Perform transcription
                    logging.info("process_url_with_metadata: Starting transcription...")
                    logging.info(f"process_url_with_metadata: overwrite existing?: {overwrite_existing}")
                    audio_file_path, segments = perform_transcription(video_file_path, offset, whisper_model,
                                                                      vad_filter, diarize, overwrite_existing)

                    if audio_file_path is None or segments is None:
                        logging.error("process_url_with_metadata: Transcription failed or segments not available.")
                        return None, None, None, None, None, None

                    logging.info(f"process_url_with_metadata: Transcription completed. Number of segments: {len(segments)}")

                    # Add metadata to segments
                    segments_with_metadata = {
                        "metadata": info_dict,
                        "segments": segments
                    }

                    # Save segments with metadata to JSON file
                    segments_json_path = os.path.splitext(audio_file_path)[0] + ".segments.json"
                    with open(segments_json_path, 'w') as f:
                        json.dump(segments_with_metadata, f, indent=2)

                    # Delete the .wav file after successful transcription
                    files_to_delete = [audio_file_path]
                    for file_path in files_to_delete:
                        if file_path and os.path.exists(file_path):
                            try:
                                os.remove(file_path)
                                logging.info(f"process_url_with_metadata: Successfully deleted file: {file_path}")
                            except Exception as e:
                                logging.warning(f"process_url_with_metadata: Failed to delete file {file_path}: {str(e)}")

                    # Delete the mp4 file after successful transcription if not keeping original audio
                    # Modify the file deletion logic to respect keep_original_video
                    if not keep_original_video:
                        files_to_delete = [audio_file_path, video_file_path]
                        for file_path in files_to_delete:
                            if file_path and os.path.exists(file_path):
                                try:
                                    os.remove(file_path)
                                    logging.info(f"process_url_with_metadata: Successfully deleted file: {file_path}")
                                except Exception as e:
                                    logging.warning(f"process_url_with_metadata: Failed to delete file {file_path}: {str(e)}")
                    else:
                        logging.info(f"process_url_with_metadata: Keeping original video file: {video_file_path}")
                        logging.info(f"process_url_with_metadata: Keeping original audio file: {audio_file_path}")

                    # Process segments based on the timestamp option
                    if not include_timestamps:
                        segments = [{'Text': segment['Text']} for segment in segments]

                    logging.info(f"Segments processed for timestamp inclusion: {segments}")

                    # Extract text from segments
                    transcription_text = extract_text_from_segments(segments)

                    if transcription_text.startswith("Error:"):
                        logging.error(f"process_url_with_metadata: Failed to extract transcription: {transcription_text}")
                        return None, None, None, None, None, None

                    # Use transcription_text instead of segments for further processing
                    full_text_with_metadata = f"{json.dumps(info_dict, indent=2)}\n\n{transcription_text}"

                    logging.debug(f"process_url_with_metadata: Full text with metadata extracted: {full_text_with_metadata[:100]}...")

                    # Perform summarization if API is provided
                    summary_text = None
                    if api_name:
                        # API key resolution handled at base of function if none provided
                        api_key = api_key if api_key else None
                        logging.info(f"process_url_with_metadata: Starting summarization with {api_name}...")

                        # Perform Chunking if enabled
                        # FIXME - Setup a proper prompt for Recursive Summarization
                        if use_chunking:
                            logging.info("process_url_with_metadata: Chunking enabled. Starting chunking...")
                            chunked_texts = improved_chunking_process(full_text_with_metadata, chunk_options)

                            if chunked_texts is None:
                                logging.warning("Chunking failed, falling back to full text summarization")
                                summary_text = perform_summarization(api_name, full_text_with_metadata, custom_prompt,
                                                                     api_key)
                            else:
                                logging.debug(
                                    f"process_url_with_metadata: Chunking completed. Processing {len(chunked_texts)} chunks...")
                                summaries = []

                                if rolling_summarization:
                                    # Perform recursive summarization on each chunk
                                    for chunk in chunked_texts:
                                        chunk_summary = perform_summarization(api_name, chunk['text'], custom_prompt,
                                                                              api_key)
                                        if chunk_summary:
                                            summaries.append(
                                                f"Chunk {chunk['metadata']['chunk_index']}/{chunk['metadata']['total_chunks']}: {chunk_summary}")
                                            summary_text = "\n\n".join(summaries)
                                        else:
                                            logging.error("All chunk summarizations failed")
                                            summary_text = None

                                for chunk in chunked_texts:
                                    # Perform Non-recursive summarization on each chunk
                                    chunk_summary = perform_summarization(api_name, chunk['text'], custom_prompt,
                                                                          api_key)
                                    if chunk_summary:
                                        summaries.append(
                                            f"Chunk {chunk['metadata']['chunk_index']}/{chunk['metadata']['total_chunks']}: {chunk_summary}")

                                    if summaries:
                                        summary_text = "\n\n".join(summaries)
                                        logging.info(f"Successfully summarized {len(summaries)} chunks")
                                    else:
                                        logging.error("All chunk summarizations failed")
                                        summary_text = None
                        else:
                            # Regular summarization without chunking
                            summary_text = perform_summarization(api_name, full_text_with_metadata, custom_prompt,
                                                                 api_key) if api_name else None

                        if summary_text is None:
                            logging.error("Summarization failed.")
                            return None, None, None, None, None, None
                        logging.debug(f"process_url_with_metadata: Summarization completed: {summary_text[:100]}...")

                    # Save transcription and summary
                    logging.info("process_url_with_metadata: Saving transcription and summary...")
                    download_path = create_download_directory("Audio_Processing")
                    json_file_path, summary_file_path = save_transcription_and_summary(full_text_with_metadata,
                                                                                       summary_text,
                                                                                       download_path, info_dict)
                    logging.info(f"process_url_with_metadata: Transcription saved to: {json_file_path}")
                    logging.info(f"process_url_with_metadata: Summary saved to: {summary_file_path}")

                    # Prepare keywords for database
                    if isinstance(keywords, str):
                        keywords_list = [kw.strip() for kw in keywords.split(',') if kw.strip()]
                    elif isinstance(keywords, (list, tuple)):
                        keywords_list = keywords
                    else:
                        keywords_list = []
                    logging.info(f"process_url_with_metadata: Keywords prepared: {keywords_list}")

                    existing_media = check_existing_media(info_dict['webpage_url'])

                    if existing_media:
                        # Update existing media with new version
                        media_id = existing_media['id']
                        update_result = update_media_content_with_version(media_id, info_dict, full_text_with_metadata,
                                                                          custom_prompt, summary_text, whisper_model)
                        logging.info(f"process_url_with_metadata: {update_result}")
                    else:
                        # Add new media to database
                        add_result = add_media_to_database(info_dict['webpage_url'], info_dict, full_text_with_metadata,
                                                           summary_text,
                                                           keywords_list, custom_prompt, whisper_model)
                        logging.info(f"process_url_with_metadata: {add_result}")

                    return info_dict[
                        'webpage_url'], full_text_with_metadata, summary_text, json_file_path, summary_file_path, info_dict

                except Exception as e:
                    logging.error(f"Error in process_url_with_metadata: {str(e)}", exc_info=True)
                    return None, None, None, None, None, None

            def toggle_confabulation_output(checkbox_value):
                return gr.update(visible=checkbox_value)

            confab_checkbox.change(
                fn=toggle_confabulation_output,
                inputs=[confab_checkbox],
                outputs=[confabulation_output]
            )

            process_button.click(
                fn=process_videos_wrapper,
                inputs=[
                    url_input,
                    video_file_input,
                    start_time_input,
                    end_time_input,
                    diarize_input,
                    vad_checkbox,
                    whisper_model_input,
                    custom_prompt_checkbox,
                    custom_prompt_input,
                    chunking_options_checkbox,
                    chunk_method,
                    max_chunk_size,
                    chunk_overlap,
                    use_adaptive_chunking,
                    use_multi_level_chunking,
                    chunk_language,
                    summarize_recursively,
                    api_name_input,
                    api_key_input,
                    keywords_input,
                    use_cookies_input,
                    cookies_input,
                    batch_size_input,
                    timestamp_option,
                    keep_original_video,
                    confab_checkbox,
                    overwrite_checkbox
                ],
                outputs=[progress_output, error_output, results_output, download_transcription, download_summary, confabulation_output]
            )

#
# End of Video_transcription_tab.py
#######################################################################################################################