File size: 15,539 Bytes
45e1f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# RAG_Library_2.py
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline.
#
# Import necessary modules and functions
import configparser
import logging
import os
from typing import Dict, Any, List, Optional
# Local Imports
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
from App_Function_Libraries.DB.DB_Manager import add_media_to_database, search_db, get_unprocessed_media, \
    fetch_keywords_for_media
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
#
# 3rd-Party Imports
import openai
#
########################################################################################################################
#
# Functions:

# Initialize OpenAI client (adjust this based on your API key management)
openai.api_key = "your-openai-api-key"

# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the config file
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt')
# Read the config file
config = configparser.ConfigParser()
# Read the configuration file
config.read('config.txt')

# Main RAG pipeline function
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
    try:
        # Extract content
        try:
            article_data = scrape_article(url)
            content = article_data['content']
            title = article_data['title']
        except Exception as e:
            logging.error(f"Error scraping article: {str(e)}")
            return {"error": "Failed to scrape article", "details": str(e)}

        # Store the article in the database and get the media_id
        try:
            media_id = add_media_to_database(url, title, 'article', content)
        except Exception as e:
            logging.error(f"Error adding article to database: {str(e)}")
            return {"error": "Failed to store article in database", "details": str(e)}

        # Process and store content
        collection_name = f"article_{media_id}"
        try:
            # FIXME
            # def process_and_store_content(content: str, collection_name: str, media_id: int, file_name: str,
            #                               create_embeddings: bool = False, create_summary: bool = False,
            #                               api_name: str = None):
            process_and_store_content(content, collection_name, media_id, title)
        except Exception as e:
            logging.error(f"Error processing and storing content: {str(e)}")
            return {"error": "Failed to process and store content", "details": str(e)}

        # Perform searches
        try:
            vector_results = vector_search(collection_name, query, k=5)
            fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
        except Exception as e:
            logging.error(f"Error performing searches: {str(e)}")
            return {"error": "Failed to perform searches", "details": str(e)}

        # Combine results with error handling for missing 'content' key
        all_results = []
        for result in vector_results + fts_results:
            if isinstance(result, dict) and 'content' in result:
                all_results.append(result['content'])
            else:
                logging.warning(f"Unexpected result format: {result}")
                all_results.append(str(result))

        context = "\n".join(all_results)

        # Generate answer using the selected API
        try:
            answer = generate_answer(api_choice, context, query)
        except Exception as e:
            logging.error(f"Error generating answer: {str(e)}")
            return {"error": "Failed to generate answer", "details": str(e)}

        return {
            "answer": answer,
            "context": context
        }

    except Exception as e:
        logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
        return {"error": "An unexpected error occurred", "details": str(e)}



# RAG Search with keyword filtering
def enhanced_rag_pipeline(query: str, api_choice: str, keywords: str = None) -> Dict[str, Any]:
    try:
        # Load embedding provider from config, or fallback to 'openai'
        embedding_provider = config.get('Embeddings', 'provider', fallback='openai')

        # Log the provider used
        logging.debug(f"Using embedding provider: {embedding_provider}")

        # Process keywords if provided
        keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else []
        logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}")

        # Fetch relevant media IDs based on keywords if keywords are provided
        relevant_media_ids = fetch_relevant_media_ids(keyword_list) if keyword_list else None
        logging.debug(f"enhanced_rag_pipeline - relevant media IDs: {relevant_media_ids}")

        # Perform vector search
        vector_results = perform_vector_search(query, relevant_media_ids)
        logging.debug(f"enhanced_rag_pipeline - Vector search results: {vector_results}")

        # Perform full-text search
        fts_results = perform_full_text_search(query, relevant_media_ids)
        logging.debug(f"enhanced_rag_pipeline - Full-text search results: {fts_results}")

        # Combine results
        all_results = vector_results + fts_results
        # FIXME
        if not all_results:
            logging.info(f"No results found. Query: {query}, Keywords: {keywords}")
            return {
                "answer": "I couldn't find any relevant information based on your query and keywords.",
                "context": ""
            }

        # FIXME - Apply Re-Ranking of results here
        apply_re_ranking = False
        if apply_re_ranking:
            # Implement re-ranking logic here
            pass
        # Extract content from results
        context = "\n".join([result['content'] for result in all_results[:10]])  # Limit to top 10 results
        logging.debug(f"Context length: {len(context)}")
        logging.debug(f"Context: {context[:200]}")
        # Generate answer using the selected API
        answer = generate_answer(api_choice, context, query)

        return {
            "answer": answer,
            "context": context
        }
    except Exception as e:
        logging.error(f"Error in enhanced_rag_pipeline: {str(e)}")
        return {
            "answer": "An error occurred while processing your request.",
            "context": ""
        }


def generate_answer(api_choice: str, context: str, query: str) -> str:
    logging.debug("Entering generate_answer function")
    config = load_comprehensive_config()
    logging.debug(f"Config sections: {config.sections()}")
    prompt = f"Context: {context}\n\nQuestion: {query}"
    if api_choice == "OpenAI":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai
        return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
    elif api_choice == "Anthropic":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic
        return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
    elif api_choice == "Cohere":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere
        return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
    elif api_choice == "Groq":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq
        return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
    elif api_choice == "OpenRouter":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter
        return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
    elif api_choice == "HuggingFace":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface
        return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
    elif api_choice == "DeepSeek":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek
        return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
    elif api_choice == "Mistral":
        from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral
        return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
    elif api_choice == "Local-LLM":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm
        return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
    elif api_choice == "Llama.cpp":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama
        return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
    elif api_choice == "Kobold":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold
        return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
    elif api_choice == "Ooba":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga
        return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
    elif api_choice == "TabbyAPI":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi
        return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
    elif api_choice == "vLLM":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm
        return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
    elif api_choice == "ollama":
        from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama
        return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
    else:
        raise ValueError(f"Unsupported API choice: {api_choice}")

# Function to preprocess and store all existing content in the database
def preprocess_all_content():
    unprocessed_media = get_unprocessed_media()
    for row in unprocessed_media:
        media_id = row[0]
        content = row[1]
        media_type = row[2]
        collection_name = f"{media_type}_{media_id}"
        # FIXME
        # def process_and_store_content(content: str, collection_name: str, media_id: int, file_name: str,
        #                               create_embeddings: bool = False, create_summary: bool = False,
        #                               api_name: str = None):
        process_and_store_content(content, collection_name, media_id, "")


def perform_vector_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
    all_collections = chroma_client.list_collections()
    vector_results = []
    for collection in all_collections:
        collection_results = vector_search(collection.name, query, k=5)
        filtered_results = [
            result for result in collection_results
            if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids
        ]
        vector_results.extend(filtered_results)
    return vector_results


def perform_full_text_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
    fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
    filtered_fts_results = [
        {
            "content": result['content'],
            "metadata": {"media_id": result['id']}
        }
        for result in fts_results
        if relevant_media_ids is None or result['id'] in relevant_media_ids
    ]
    return filtered_fts_results


def fetch_relevant_media_ids(keywords: List[str]) -> List[int]:
    relevant_ids = set()
    try:
        for keyword in keywords:
            media_ids = fetch_keywords_for_media(keyword)
            relevant_ids.update(media_ids)
    except Exception as e:
        logging.error(f"Error fetching relevant media IDs: {str(e)}")
    return list(relevant_ids)


def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]:
    if not keywords:
        return results

    filtered_results = []
    for result in results:
        try:
            metadata = result.get('metadata', {})
            if metadata is None:
                logging.warning(f"No metadata found for result: {result}")
                continue
            if not isinstance(metadata, dict):
                logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.")
                continue

            media_id = metadata.get('media_id')
            if media_id is None:
                logging.warning(f"No media_id found in metadata: {metadata}")
                continue

            media_keywords = fetch_keywords_for_media(media_id)
            if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords):
                filtered_results.append(result)
        except Exception as e:
            logging.error(f"Error processing result: {result}. Error: {str(e)}")

    return filtered_results

# FIXME: to be implememted
def extract_media_id_from_result(result: str) -> Optional[int]:
    # Implement this function based on how you store the media_id in your results
    # For example, if it's stored at the beginning of each result:
    try:
        return int(result.split('_')[0])
    except (IndexError, ValueError):
        logging.error(f"Failed to extract media_id from result: {result}")
        return None




# Example usage:
# 1. Initialize the system:
# create_tables(db)  # Ensure FTS tables are set up
#
# 2. Create ChromaDB
# chroma_client = ChromaDBClient()
#
# 3. Create Embeddings
# Store embeddings in ChromaDB
# preprocess_all_content() or create_embeddings()
#
# 4. Perform RAG search across all content:
# result = rag_search("What are the key points about climate change?")
# print(result['answer'])
#
# (Extra)5. Perform RAG on a specific URL:
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
# print(result['answer'])
#
########################################################################################################################


############################################################################################################
#
# ElasticSearch Retriever

# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
#
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query

#
# End of RAG_Library_2.py
############################################################################################################