File size: 15,060 Bytes
c5b0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Llamafile_tab.py
# Description: Gradio interface for configuring and launching Llamafile with Local LLMs

# Imports
import os
import logging
from typing import Tuple, Optional
import gradio as gr


from App_Function_Libraries.Local_LLM.Local_LLM_Inference_Engine_Lib import (
    download_llm_model,
    llm_models,
    start_llamafile,
    get_gguf_llamafile_files
)
#
#######################################################################################################################
#
# Functions:

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
MODELS_DIR = os.path.join(BASE_DIR, "Models")

def create_chat_with_llamafile_tab():
    # Function to update model path based on selection
    def on_local_model_change(selected_model: str, search_directory: str) -> str:
        if selected_model and isinstance(search_directory, str):
            model_path = os.path.abspath(os.path.join(search_directory, selected_model))
            logging.debug(f"Selected model path: {model_path}")  # Debug print for selected model path
            return model_path
        return "Invalid selection or directory."

    # Function to update the dropdown with available models
    def update_dropdowns(search_directory: str) -> Tuple[dict, str]:
        logging.debug(f"User-entered directory: {search_directory}")  # Debug print for directory
        if not os.path.isdir(search_directory):
            logging.debug(f"Directory does not exist: {search_directory}")  # Debug print for non-existing directory
            return gr.update(choices=[], value=None), "Directory does not exist."

        try:
            logging.debug(f"Directory exists: {search_directory}, scanning for files...")  # Confirm directory exists
            model_files = get_gguf_llamafile_files(search_directory)
            logging.debug("Completed scanning for model files.")
        except Exception as e:
            logging.error(f"Error scanning directory: {e}")
            return gr.update(choices=[], value=None), f"Error scanning directory: {e}"

        if not model_files:
            logging.debug(f"No model files found in {search_directory}")  # Debug print for no files found
            return gr.update(choices=[], value=None), "No model files found in the specified directory."

        # Update the dropdown choices with the model files found
        logging.debug(f"Models loaded from {search_directory}: {model_files}")  # Debug: Print model files loaded
        return gr.update(choices=model_files, value=None), f"Models loaded from {search_directory}."



    def download_preset_model(selected_model: str) -> Tuple[str, str]:
        """

        Downloads the selected preset model.



        Args:

            selected_model (str): The key of the selected preset model.



        Returns:

            Tuple[str, str]: Status message and the path to the downloaded model.

        """
        model_info = llm_models.get(selected_model)
        if not model_info:
            return "Invalid model selection.", ""

        try:
            model_path = download_llm_model(
                model_name=model_info["name"],
                model_url=model_info["url"],
                model_filename=model_info["filename"],
                model_hash=model_info["hash"]
            )
            return f"Model '{model_info['name']}' downloaded successfully.", model_path
        except Exception as e:
            logging.error(f"Error downloading model: {e}")
            return f"Failed to download model: {e}", ""

    with gr.TabItem("Local LLM with Llamafile", visible=True):
        gr.Markdown("# Settings for Llamafile")

        with gr.Row():
            with gr.Column():
                am_noob = gr.Checkbox(label="Enable Sane Defaults", value=False, visible=True)
                advanced_mode_toggle = gr.Checkbox(label="Advanced Mode - Show All Settings", value=False)
                # Advanced Inputs
                verbose_checked = gr.Checkbox(label="Enable Verbose Output", value=False, visible=False)
                threads_checked = gr.Checkbox(label="Set CPU Threads", value=False, visible=False)
                threads_value = gr.Number(label="Number of CPU Threads", value=None, precision=0, visible=False)
                threads_batched_checked = gr.Checkbox(label="Enable Batched Inference", value=False, visible=False)
                threads_batched_value = gr.Number(label="Batch Size for Inference", value=None, precision=0, visible=False)
                model_alias_checked = gr.Checkbox(label="Set Model Alias", value=False, visible=False)
                model_alias_value = gr.Textbox(label="Model Alias", value="", visible=False)
                ctx_size_checked = gr.Checkbox(label="Set Prompt Context Size", value=False, visible=False)
                ctx_size_value = gr.Number(label="Prompt Context Size", value=8124, precision=0, visible=False)
                ngl_checked = gr.Checkbox(label="Enable GPU Layers", value=False, visible=True)
                ngl_value = gr.Number(label="Number of GPU Layers", value=None, precision=0, visible=True)
                batch_size_checked = gr.Checkbox(label="Set Batch Size", value=False, visible=False)
                batch_size_value = gr.Number(label="Batch Size", value=512, visible=False)
                memory_f32_checked = gr.Checkbox(label="Use 32-bit Floating Point", value=False, visible=False)
                numa_checked = gr.Checkbox(label="Enable NUMA", value=False, visible=False)
                server_timeout_value = gr.Number(label="Server Timeout", value=600, precision=0, visible=False)
                host_checked = gr.Checkbox(label="Set IP to Listen On", value=False, visible=False)
                host_value = gr.Textbox(label="Host IP Address", value="", visible=False)
                port_checked = gr.Checkbox(label="Set Server Port", value=False, visible=False)
                port_value = gr.Number(label="Port Number", value=8080, precision=0, visible=False)
                api_key_checked = gr.Checkbox(label="Set API Key", value=False, visible=False)
                api_key_value = gr.Textbox(label="API Key", value="", visible=False)
                http_threads_checked = gr.Checkbox(label="Set HTTP Server Threads", value=False, visible=False)
                http_threads_value = gr.Number(label="Number of HTTP Server Threads", value=None, precision=0, visible=False)
                hf_repo_checked = gr.Checkbox(label="Use Huggingface Repo Model", value=False, visible=False)
                hf_repo_value = gr.Textbox(label="Huggingface Repo Name", value="", visible=False)
                hf_file_checked = gr.Checkbox(label="Set Huggingface Model File", value=False, visible=False)
                hf_file_value = gr.Textbox(label="Huggingface Model File", value="", visible=False)

            with gr.Column():
                # Model Selection Section
                gr.Markdown("## Model Selection")

                # Option 1: Select from Local Filesystem
                with gr.Row():
                    search_directory = gr.Textbox(
                        label="Model Directory",
                        placeholder="Enter directory path (currently './Models')",
                        value=MODELS_DIR,
                        interactive=True
                    )

                # Initial population of local models
                initial_dropdown_update, _ = update_dropdowns(MODELS_DIR)
                logging.debug(f"Scanning directory: {MODELS_DIR}")
                refresh_button = gr.Button("Refresh Models")
                local_model_dropdown = gr.Dropdown(
                    label="Select Model from Directory",
                    choices=initial_dropdown_update["choices"],
                    value=None
                )
                # Display selected model path
                model_value = gr.Textbox(label="Selected Model File Path", value="", interactive=False)

                # Option 2: Download Preset Models
                gr.Markdown("## Download Preset Models")

                preset_model_dropdown = gr.Dropdown(
                    label="Select a Preset Model",
                    choices=list(llm_models.keys()),
                    value=None,
                    interactive=True,
                    info="Choose a preset model to download."
                )
                download_preset_button = gr.Button("Download Selected Preset")

        with gr.Row():
            with gr.Column():
                start_button = gr.Button("Start Llamafile")
                stop_button = gr.Button("Stop Llamafile (doesn't work)")
                output_display = gr.Markdown()


        # Show/hide advanced inputs based on toggle
        def update_visibility(show_advanced: bool):
            components = [
                verbose_checked, threads_checked, threads_value,
                http_threads_checked, http_threads_value,
                hf_repo_checked, hf_repo_value,
                hf_file_checked, hf_file_value,
                ctx_size_checked, ctx_size_value,
                ngl_checked, ngl_value,
                host_checked, host_value,
                port_checked, port_value
            ]
            return [gr.update(visible=show_advanced) for _ in components]

        def on_start_button_click(

                am_noob: bool,

                verbose_checked: bool,

                threads_checked: bool,

                threads_value: Optional[int],

                threads_batched_checked: bool,

                threads_batched_value: Optional[int],

                model_alias_checked: bool,

                model_alias_value: str,

                http_threads_checked: bool,

                http_threads_value: Optional[int],

                model_value: str,

                hf_repo_checked: bool,

                hf_repo_value: str,

                hf_file_checked: bool,

                hf_file_value: str,

                ctx_size_checked: bool,

                ctx_size_value: Optional[int],

                ngl_checked: bool,

                ngl_value: Optional[int],

                batch_size_checked: bool,

                batch_size_value: Optional[int],

                memory_f32_checked: bool,

                numa_checked: bool,

                server_timeout_value: Optional[int],

                host_checked: bool,

                host_value: str,

                port_checked: bool,

                port_value: Optional[int],

                api_key_checked: bool,

                api_key_value: str

        ) -> str:
            """

            Event handler for the Start Llamafile button.

            """
            try:
                result = start_llamafile(
                    am_noob,
                    verbose_checked,
                    threads_checked,
                    threads_value,
                    threads_batched_checked,
                    threads_batched_value,
                    model_alias_checked,
                    model_alias_value,
                    http_threads_checked,
                    http_threads_value,
                    model_value,
                    hf_repo_checked,
                    hf_repo_value,
                    hf_file_checked,
                    hf_file_value,
                    ctx_size_checked,
                    ctx_size_value,
                    ngl_checked,
                    ngl_value,
                    batch_size_checked,
                    batch_size_value,
                    memory_f32_checked,
                    numa_checked,
                    server_timeout_value,
                    host_checked,
                    host_value,
                    port_checked,
                    port_value,
                    api_key_checked,
                    api_key_value
                )
                return result
            except Exception as e:
                logging.error(f"Error starting Llamafile: {e}")
                return f"Failed to start Llamafile: {e}"

        advanced_mode_toggle.change(
            fn=update_visibility,
            inputs=[advanced_mode_toggle],
            outputs=[
                verbose_checked, threads_checked, threads_value,
                http_threads_checked, http_threads_value,
                hf_repo_checked, hf_repo_value,
                hf_file_checked, hf_file_value,
                ctx_size_checked, ctx_size_value,
                ngl_checked, ngl_value,
                host_checked, host_value,
                port_checked, port_value
            ]
        )

        start_button.click(
            fn=on_start_button_click,
            inputs=[
                am_noob,
                verbose_checked,
                threads_checked,
                threads_value,
                threads_batched_checked,
                threads_batched_value,
                model_alias_checked,
                model_alias_value,
                http_threads_checked,
                http_threads_value,
                model_value,
                hf_repo_checked,
                hf_repo_value,
                hf_file_checked,
                hf_file_value,
                ctx_size_checked,
                ctx_size_value,
                ngl_checked,
                ngl_value,
                batch_size_checked,
                batch_size_value,
                memory_f32_checked,
                numa_checked,
                server_timeout_value,
                host_checked,
                host_value,
                port_checked,
                port_value,
                api_key_checked,
                api_key_value
            ],
            outputs=output_display
        )

        download_preset_button.click(
            fn=download_preset_model,
            inputs=[preset_model_dropdown],
            outputs=[output_display, model_value]
        )

        # Click event for refreshing models
        refresh_button.click(
            fn=update_dropdowns,
            inputs=[search_directory],  # Ensure that the directory path (string) is passed
            outputs=[local_model_dropdown, output_display]  # Update dropdown and status
        )

        # Event to update model_value when a model is selected from the dropdown
        local_model_dropdown.change(
            fn=on_local_model_change,  # Function that calculates the model path
            inputs=[local_model_dropdown, search_directory],  # Inputs: selected model and directory
            outputs=[model_value]  # Output: Update the model_value textbox with the selected model path
        )

#
#
#######################################################################################################################