Spaces:
Running
Running
File size: 15,060 Bytes
c5b0bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Llamafile_tab.py
# Description: Gradio interface for configuring and launching Llamafile with Local LLMs
# Imports
import os
import logging
from typing import Tuple, Optional
import gradio as gr
from App_Function_Libraries.Local_LLM.Local_LLM_Inference_Engine_Lib import (
download_llm_model,
llm_models,
start_llamafile,
get_gguf_llamafile_files
)
#
#######################################################################################################################
#
# Functions:
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
MODELS_DIR = os.path.join(BASE_DIR, "Models")
def create_chat_with_llamafile_tab():
# Function to update model path based on selection
def on_local_model_change(selected_model: str, search_directory: str) -> str:
if selected_model and isinstance(search_directory, str):
model_path = os.path.abspath(os.path.join(search_directory, selected_model))
logging.debug(f"Selected model path: {model_path}") # Debug print for selected model path
return model_path
return "Invalid selection or directory."
# Function to update the dropdown with available models
def update_dropdowns(search_directory: str) -> Tuple[dict, str]:
logging.debug(f"User-entered directory: {search_directory}") # Debug print for directory
if not os.path.isdir(search_directory):
logging.debug(f"Directory does not exist: {search_directory}") # Debug print for non-existing directory
return gr.update(choices=[], value=None), "Directory does not exist."
try:
logging.debug(f"Directory exists: {search_directory}, scanning for files...") # Confirm directory exists
model_files = get_gguf_llamafile_files(search_directory)
logging.debug("Completed scanning for model files.")
except Exception as e:
logging.error(f"Error scanning directory: {e}")
return gr.update(choices=[], value=None), f"Error scanning directory: {e}"
if not model_files:
logging.debug(f"No model files found in {search_directory}") # Debug print for no files found
return gr.update(choices=[], value=None), "No model files found in the specified directory."
# Update the dropdown choices with the model files found
logging.debug(f"Models loaded from {search_directory}: {model_files}") # Debug: Print model files loaded
return gr.update(choices=model_files, value=None), f"Models loaded from {search_directory}."
def download_preset_model(selected_model: str) -> Tuple[str, str]:
"""
Downloads the selected preset model.
Args:
selected_model (str): The key of the selected preset model.
Returns:
Tuple[str, str]: Status message and the path to the downloaded model.
"""
model_info = llm_models.get(selected_model)
if not model_info:
return "Invalid model selection.", ""
try:
model_path = download_llm_model(
model_name=model_info["name"],
model_url=model_info["url"],
model_filename=model_info["filename"],
model_hash=model_info["hash"]
)
return f"Model '{model_info['name']}' downloaded successfully.", model_path
except Exception as e:
logging.error(f"Error downloading model: {e}")
return f"Failed to download model: {e}", ""
with gr.TabItem("Local LLM with Llamafile", visible=True):
gr.Markdown("# Settings for Llamafile")
with gr.Row():
with gr.Column():
am_noob = gr.Checkbox(label="Enable Sane Defaults", value=False, visible=True)
advanced_mode_toggle = gr.Checkbox(label="Advanced Mode - Show All Settings", value=False)
# Advanced Inputs
verbose_checked = gr.Checkbox(label="Enable Verbose Output", value=False, visible=False)
threads_checked = gr.Checkbox(label="Set CPU Threads", value=False, visible=False)
threads_value = gr.Number(label="Number of CPU Threads", value=None, precision=0, visible=False)
threads_batched_checked = gr.Checkbox(label="Enable Batched Inference", value=False, visible=False)
threads_batched_value = gr.Number(label="Batch Size for Inference", value=None, precision=0, visible=False)
model_alias_checked = gr.Checkbox(label="Set Model Alias", value=False, visible=False)
model_alias_value = gr.Textbox(label="Model Alias", value="", visible=False)
ctx_size_checked = gr.Checkbox(label="Set Prompt Context Size", value=False, visible=False)
ctx_size_value = gr.Number(label="Prompt Context Size", value=8124, precision=0, visible=False)
ngl_checked = gr.Checkbox(label="Enable GPU Layers", value=False, visible=True)
ngl_value = gr.Number(label="Number of GPU Layers", value=None, precision=0, visible=True)
batch_size_checked = gr.Checkbox(label="Set Batch Size", value=False, visible=False)
batch_size_value = gr.Number(label="Batch Size", value=512, visible=False)
memory_f32_checked = gr.Checkbox(label="Use 32-bit Floating Point", value=False, visible=False)
numa_checked = gr.Checkbox(label="Enable NUMA", value=False, visible=False)
server_timeout_value = gr.Number(label="Server Timeout", value=600, precision=0, visible=False)
host_checked = gr.Checkbox(label="Set IP to Listen On", value=False, visible=False)
host_value = gr.Textbox(label="Host IP Address", value="", visible=False)
port_checked = gr.Checkbox(label="Set Server Port", value=False, visible=False)
port_value = gr.Number(label="Port Number", value=8080, precision=0, visible=False)
api_key_checked = gr.Checkbox(label="Set API Key", value=False, visible=False)
api_key_value = gr.Textbox(label="API Key", value="", visible=False)
http_threads_checked = gr.Checkbox(label="Set HTTP Server Threads", value=False, visible=False)
http_threads_value = gr.Number(label="Number of HTTP Server Threads", value=None, precision=0, visible=False)
hf_repo_checked = gr.Checkbox(label="Use Huggingface Repo Model", value=False, visible=False)
hf_repo_value = gr.Textbox(label="Huggingface Repo Name", value="", visible=False)
hf_file_checked = gr.Checkbox(label="Set Huggingface Model File", value=False, visible=False)
hf_file_value = gr.Textbox(label="Huggingface Model File", value="", visible=False)
with gr.Column():
# Model Selection Section
gr.Markdown("## Model Selection")
# Option 1: Select from Local Filesystem
with gr.Row():
search_directory = gr.Textbox(
label="Model Directory",
placeholder="Enter directory path (currently './Models')",
value=MODELS_DIR,
interactive=True
)
# Initial population of local models
initial_dropdown_update, _ = update_dropdowns(MODELS_DIR)
logging.debug(f"Scanning directory: {MODELS_DIR}")
refresh_button = gr.Button("Refresh Models")
local_model_dropdown = gr.Dropdown(
label="Select Model from Directory",
choices=initial_dropdown_update["choices"],
value=None
)
# Display selected model path
model_value = gr.Textbox(label="Selected Model File Path", value="", interactive=False)
# Option 2: Download Preset Models
gr.Markdown("## Download Preset Models")
preset_model_dropdown = gr.Dropdown(
label="Select a Preset Model",
choices=list(llm_models.keys()),
value=None,
interactive=True,
info="Choose a preset model to download."
)
download_preset_button = gr.Button("Download Selected Preset")
with gr.Row():
with gr.Column():
start_button = gr.Button("Start Llamafile")
stop_button = gr.Button("Stop Llamafile (doesn't work)")
output_display = gr.Markdown()
# Show/hide advanced inputs based on toggle
def update_visibility(show_advanced: bool):
components = [
verbose_checked, threads_checked, threads_value,
http_threads_checked, http_threads_value,
hf_repo_checked, hf_repo_value,
hf_file_checked, hf_file_value,
ctx_size_checked, ctx_size_value,
ngl_checked, ngl_value,
host_checked, host_value,
port_checked, port_value
]
return [gr.update(visible=show_advanced) for _ in components]
def on_start_button_click(
am_noob: bool,
verbose_checked: bool,
threads_checked: bool,
threads_value: Optional[int],
threads_batched_checked: bool,
threads_batched_value: Optional[int],
model_alias_checked: bool,
model_alias_value: str,
http_threads_checked: bool,
http_threads_value: Optional[int],
model_value: str,
hf_repo_checked: bool,
hf_repo_value: str,
hf_file_checked: bool,
hf_file_value: str,
ctx_size_checked: bool,
ctx_size_value: Optional[int],
ngl_checked: bool,
ngl_value: Optional[int],
batch_size_checked: bool,
batch_size_value: Optional[int],
memory_f32_checked: bool,
numa_checked: bool,
server_timeout_value: Optional[int],
host_checked: bool,
host_value: str,
port_checked: bool,
port_value: Optional[int],
api_key_checked: bool,
api_key_value: str
) -> str:
"""
Event handler for the Start Llamafile button.
"""
try:
result = start_llamafile(
am_noob,
verbose_checked,
threads_checked,
threads_value,
threads_batched_checked,
threads_batched_value,
model_alias_checked,
model_alias_value,
http_threads_checked,
http_threads_value,
model_value,
hf_repo_checked,
hf_repo_value,
hf_file_checked,
hf_file_value,
ctx_size_checked,
ctx_size_value,
ngl_checked,
ngl_value,
batch_size_checked,
batch_size_value,
memory_f32_checked,
numa_checked,
server_timeout_value,
host_checked,
host_value,
port_checked,
port_value,
api_key_checked,
api_key_value
)
return result
except Exception as e:
logging.error(f"Error starting Llamafile: {e}")
return f"Failed to start Llamafile: {e}"
advanced_mode_toggle.change(
fn=update_visibility,
inputs=[advanced_mode_toggle],
outputs=[
verbose_checked, threads_checked, threads_value,
http_threads_checked, http_threads_value,
hf_repo_checked, hf_repo_value,
hf_file_checked, hf_file_value,
ctx_size_checked, ctx_size_value,
ngl_checked, ngl_value,
host_checked, host_value,
port_checked, port_value
]
)
start_button.click(
fn=on_start_button_click,
inputs=[
am_noob,
verbose_checked,
threads_checked,
threads_value,
threads_batched_checked,
threads_batched_value,
model_alias_checked,
model_alias_value,
http_threads_checked,
http_threads_value,
model_value,
hf_repo_checked,
hf_repo_value,
hf_file_checked,
hf_file_value,
ctx_size_checked,
ctx_size_value,
ngl_checked,
ngl_value,
batch_size_checked,
batch_size_value,
memory_f32_checked,
numa_checked,
server_timeout_value,
host_checked,
host_value,
port_checked,
port_value,
api_key_checked,
api_key_value
],
outputs=output_display
)
download_preset_button.click(
fn=download_preset_model,
inputs=[preset_model_dropdown],
outputs=[output_display, model_value]
)
# Click event for refreshing models
refresh_button.click(
fn=update_dropdowns,
inputs=[search_directory], # Ensure that the directory path (string) is passed
outputs=[local_model_dropdown, output_display] # Update dropdown and status
)
# Event to update model_value when a model is selected from the dropdown
local_model_dropdown.change(
fn=on_local_model_change, # Function that calculates the model path
inputs=[local_model_dropdown, search_directory], # Inputs: selected model and directory
outputs=[model_value] # Output: Update the model_value textbox with the selected model path
)
#
#
####################################################################################################################### |