Spaces:
Running
Running
File size: 10,239 Bytes
43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c c5b0bb7 43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# PDF_Ingestion_Lib.py
#########################################
# Library to hold functions for ingesting PDF files.#
#
####################
# Function List
#
# 1. convert_pdf_to_markdown(pdf_path)
# 2. ingest_pdf_file(file_path, title=None, author=None, keywords=None):
# 3.
#
#
####################
# Import necessary libraries
from datetime import datetime
import logging
import os
import re
import shutil
import tempfile
#
# Import External Libs
import pymupdf
import pymupdf4llm
from docling.document_converter import DocumentConverter
#
# Import Local
from App_Function_Libraries.DB.DB_Manager import add_media_with_keywords
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
#
# Constants
MAX_FILE_SIZE_MB = 50
CONVERSION_TIMEOUT_SECONDS = 300
#
#######################################################################################################################
# Function Definitions
#
def extract_text_and_format_from_pdf(pdf_path):
"""
Extract text from a PDF file and convert it to Markdown, preserving formatting.
"""
try:
log_counter("pdf_text_extraction_attempt", labels={"file_path": pdf_path})
start_time = datetime.now()
markdown_text = ""
with pymupdf.open(pdf_path) as doc:
for page_num, page in enumerate(doc, 1):
markdown_text += f"## Page {page_num}\n\n"
blocks = page.get_text("dict")["blocks"]
current_paragraph = ""
for block in blocks:
if block["type"] == 0: # Text block
for line in block["lines"]:
line_text = ""
for span in line["spans"]:
text = span["text"]
font_size = span["size"]
font_flags = span["flags"]
# Apply formatting based on font size and flags
if font_size > 20:
text = f"# {text}"
elif font_size > 16:
text = f"## {text}"
elif font_size > 14:
text = f"### {text}"
if font_flags & 2 ** 0: # Bold
text = f"**{text}**"
if font_flags & 2 ** 1: # Italic
text = f"*{text}*"
line_text += text + " "
# Remove hyphens at the end of lines
line_text = line_text.rstrip()
if line_text.endswith('-'):
line_text = line_text[:-1]
else:
line_text += " "
current_paragraph += line_text
# End of block, add paragraph
if current_paragraph:
# Remove extra spaces
current_paragraph = re.sub(r'\s+', ' ', current_paragraph).strip()
markdown_text += current_paragraph + "\n\n"
current_paragraph = ""
elif block["type"] == 1: # Image block
markdown_text += "[Image]\n\n"
markdown_text += "\n---\n\n" # Page separator
# Clean up hyphenated words
markdown_text = re.sub(r'(\w+)-\s*\n(\w+)', r'\1\2', markdown_text)
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
log_histogram("pdf_text_extraction_duration", processing_time, labels={"file_path": pdf_path})
log_counter("pdf_text_extraction_success", labels={"file_path": pdf_path})
return markdown_text
except Exception as e:
logging.error(f"Error extracting text and formatting from PDF: {str(e)}")
log_counter("pdf_text_extraction_error", labels={"file_path": pdf_path, "error": str(e)})
raise
def pymupdf4llm_parse_pdf(pdf_path):
"""
Extract text from a PDF file and convert it to Markdown, preserving formatting.
"""
try:
log_counter("pdf_text_extraction_attempt", labels={"file_path": pdf_path})
start_time = datetime.now()
markdown_text = pymupdf4llm.to_markdown(pdf_path)
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
log_histogram("pdf_text_extraction_duration", processing_time, labels={"file_path": pdf_path})
log_counter("pdf_text_extraction_success", labels={"file_path": pdf_path})
return markdown_text
except Exception as e:
logging.error(f"Error extracting text and formatting from PDF: {str(e)}")
log_counter("pdf_text_extraction_error", labels={"file_path": pdf_path, "error": str(e)})
raise
def extract_metadata_from_pdf(pdf_path):
"""
Extract metadata from a PDF file using PyMuPDF.
"""
try:
log_counter("pdf_metadata_extraction_attempt", labels={"file_path": pdf_path})
with pymupdf.open(pdf_path) as doc:
metadata = doc.metadata
log_counter("pdf_metadata_extraction_success", labels={"file_path": pdf_path})
return metadata
except Exception as e:
logging.error(f"Error extracting metadata from PDF: {str(e)}")
log_counter("pdf_metadata_extraction_error", labels={"file_path": pdf_path, "error": str(e)})
return {}
def process_and_ingest_pdf(file, title, author, keywords, parser='pymupdf4llm'):
if file is None:
log_counter("pdf_ingestion_error", labels={"error": "No file uploaded"})
return "Please select a PDF file to upload."
try:
log_counter("pdf_ingestion_attempt", labels={"file_name": file.name})
start_time = datetime.now()
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Create a path for the temporary PDF file
temp_path = os.path.join(temp_dir, "temp.pdf")
# Copy the contents of the uploaded file to the temporary file
shutil.copy(file.name, temp_path)
if parser == 'pymupdf':
# Extract text and convert to Markdown
markdown_text = extract_text_and_format_from_pdf(temp_path)
elif parser == 'pymupdf4llm':
# Extract text and convert to Markdown
markdown_text = pymupdf4llm_parse_pdf(temp_path)
elif parser == 'docling':
# Extract text and convert to Markdown using Docling
converter = DocumentConverter()
parsed_pdf = converter.convert(temp_path)
markdown_text = parsed_pdf.document.export_to_markdown()
# Extract metadata from PDF
metadata = extract_metadata_from_pdf(temp_path)
# Use metadata for title and author if not provided
if not title:
title = metadata.get('title', os.path.splitext(os.path.basename(file.name))[0])
if not author:
author = metadata.get('author', 'Unknown')
# If keywords are not provided, use a default keyword
if not keywords:
keywords = 'pdf_file,markdown_converted'
else:
keywords = f'pdf_file,markdown_converted,{keywords}'
# Add metadata-based keywords
if 'subject' in metadata:
keywords += f",{metadata['subject']}"
# Add the PDF content to the database
add_media_with_keywords(
url=file.name,
title=title,
media_type='document',
content=markdown_text,
keywords=keywords,
prompt='No prompt for PDF files',
summary='No summary for PDF files',
transcription_model='None',
author=author,
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
log_histogram("pdf_ingestion_duration", processing_time, labels={"file_name": file.name})
log_counter("pdf_ingestion_success", labels={"file_name": file.name})
return f"PDF file '{title}' by {author} ingested successfully and converted to Markdown."
except Exception as e:
logging.error(f"Error ingesting PDF file: {str(e)}")
log_counter("pdf_ingestion_error", labels={"file_name": file.name, "error": str(e)})
return f"Error ingesting PDF file: {str(e)}"
def process_and_cleanup_pdf(file, title, author, keywords, parser='pymupdf4llm'):
if file is None:
log_counter("pdf_processing_error", labels={"error": "No file uploaded"})
return "No file uploaded. Please upload a PDF file."
try:
log_counter("pdf_processing_attempt", labels={"file_name": file.name})
start_time = datetime.now()
result = process_and_ingest_pdf(file, title, author, keywords, parser)
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
log_histogram("pdf_processing_duration", processing_time, labels={"file_name": file.name})
log_counter("pdf_processing_success", labels={"file_name": file.name})
return result
except Exception as e:
logging.error(f"Error in processing and cleanup: {str(e)}")
log_counter("pdf_processing_error", labels={"file_name": file.name, "error": str(e)})
return f"Error: {str(e)}"
#
# End of PDF_Ingestion_Lib.py
#######################################################################################################################
|