Spaces:
Running
Running
# Character_Interaction_tab.py | |
# Description: This file contains the functions that are used for Character Interactions in the Gradio UI. | |
# | |
# Imports | |
import base64 | |
import io | |
import uuid | |
from datetime import datetime as datetime | |
import logging | |
import json | |
import os | |
from typing import List, Dict, Tuple, Union | |
# | |
# External Imports | |
import gradio as gr | |
from PIL import Image | |
# | |
# Local Imports | |
from App_Function_Libraries.Chat import chat, load_characters, save_chat_history_to_db_wrapper | |
from App_Function_Libraries.Gradio_UI.Chat_ui import chat_wrapper | |
from App_Function_Libraries.Gradio_UI.Writing_tab import generate_writing_feedback | |
# | |
######################################################################################################################## | |
# | |
# Single-Character chat Functions: | |
# FIXME - add these functions to the Personas library | |
def chat_with_character(user_message, history, char_data, api_name_input, api_key): | |
if char_data is None: | |
return history, "Please import a character card first." | |
bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input, | |
api_key) | |
history.append((user_message, bot_message)) | |
return history, "" | |
def import_character_card(file): | |
if file is None: | |
logging.warning("No file provided for character card import") | |
return None | |
try: | |
if file.name.lower().endswith(('.png', '.webp')): | |
logging.info(f"Attempting to import character card from image: {file.name}") | |
json_data = extract_json_from_image(file) | |
if json_data: | |
logging.info("JSON data extracted from image, attempting to parse") | |
card_data = import_character_card_json(json_data) | |
if card_data: | |
# Save the image data | |
with Image.open(file) as img: | |
img_byte_arr = io.BytesIO() | |
img.save(img_byte_arr, format='PNG') | |
card_data['image'] = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8') | |
return card_data | |
else: | |
logging.warning("No JSON data found in the image") | |
else: | |
logging.info(f"Attempting to import character card from JSON file: {file.name}") | |
content = file.read().decode('utf-8') | |
return import_character_card_json(content) | |
except Exception as e: | |
logging.error(f"Error importing character card: {e}") | |
return None | |
def import_character_card_json(json_content): | |
try: | |
# Remove any leading/trailing whitespace | |
json_content = json_content.strip() | |
# Log the first 100 characters of the content | |
logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...") | |
card_data = json.loads(json_content) | |
logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}") | |
if 'spec' in card_data and card_data['spec'] == 'chara_card_v2': | |
logging.info("Detected V2 character card") | |
return card_data['data'] | |
else: | |
logging.info("Assuming V1 character card") | |
return card_data | |
except json.JSONDecodeError as e: | |
logging.error(f"JSON decode error: {e}") | |
logging.error(f"Problematic JSON content: {json_content[:500]}...") | |
except Exception as e: | |
logging.error(f"Unexpected error parsing JSON: {e}") | |
return None | |
def extract_json_from_image(image_file): | |
logging.debug(f"Attempting to extract JSON from image: {image_file.name}") | |
try: | |
with Image.open(image_file) as img: | |
logging.debug("Image opened successfully") | |
metadata = img.info | |
if 'chara' in metadata: | |
logging.debug("Found 'chara' in image metadata") | |
chara_content = metadata['chara'] | |
logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...") | |
try: | |
decoded_content = base64.b64decode(chara_content).decode('utf-8') | |
logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...") | |
return decoded_content | |
except Exception as e: | |
logging.error(f"Error decoding base64 content: {e}") | |
logging.debug("'chara' not found in metadata, checking for base64 encoded data") | |
raw_data = img.tobytes() | |
possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0] | |
if possible_json: | |
try: | |
decoded = base64.b64decode(possible_json).decode('utf-8') | |
if decoded.startswith('{') and decoded.endswith('}'): | |
logging.debug("Found and decoded base64 JSON data") | |
return '{' + decoded + '}' | |
except Exception as e: | |
logging.error(f"Error decoding base64 data: {e}") | |
logging.warning("No JSON data found in the image") | |
except Exception as e: | |
logging.error(f"Error extracting JSON from image: {e}") | |
return None | |
def load_chat_history(file): | |
try: | |
content = file.read().decode('utf-8') | |
chat_data = json.loads(content) | |
return chat_data['history'], chat_data['character'] | |
except Exception as e: | |
logging.error(f"Error loading chat history: {e}") | |
return None, None | |
# | |
# End of X | |
###################################################################################################################### | |
# | |
# Multi-Character Chat Interface | |
# FIXME - refactor and move these functions to the Character_Chat library so that it uses the same functions | |
def character_interaction_setup(): | |
characters = load_characters() | |
return characters, [], None, None | |
def extract_character_response(response: Union[str, Tuple]) -> str: | |
if isinstance(response, tuple): | |
# If it's a tuple, try to extract the first string element | |
for item in response: | |
if isinstance(item, str): | |
return item.strip() | |
# If no string found, return a default message | |
return "I'm not sure how to respond." | |
elif isinstance(response, str): | |
# If it's already a string, just return it | |
return response.strip() | |
else: | |
# For any other type, return a default message | |
return "I'm having trouble forming a response." | |
# def process_character_response(response: str) -> str: | |
# # Remove any leading explanatory text before the first '---' | |
# parts = response.split('---') | |
# if len(parts) > 1: | |
# return '---' + '---'.join(parts[1:]) | |
# return response.strip() | |
def process_character_response(response: Union[str, Tuple]) -> str: | |
if isinstance(response, tuple): | |
response = ' '.join(str(item) for item in response if isinstance(item, str)) | |
if isinstance(response, str): | |
# Remove any leading explanatory text before the first '---' | |
parts = response.split('---') | |
if len(parts) > 1: | |
return '---' + '---'.join(parts[1:]) | |
return response.strip() | |
else: | |
return "I'm having trouble forming a response." | |
def character_turn(characters: Dict, conversation: List[Tuple[str, str]], | |
current_character: str, other_characters: List[str], | |
api_endpoint: str, api_key: str, temperature: float, | |
scenario: str = "") -> Tuple[List[Tuple[str, str]], str]: | |
if not current_character or current_character not in characters: | |
return conversation, current_character | |
if not conversation and scenario: | |
conversation.append(("Scenario", scenario)) | |
current_char = characters[current_character] | |
other_chars = [characters[char] for char in other_characters if char in characters and char != current_character] | |
prompt = f"{current_char['name']}'s personality: {current_char['personality']}\n" | |
for char in other_chars: | |
prompt += f"{char['name']}'s personality: {char['personality']}\n" | |
prompt += "Conversation so far:\n" + "\n".join([f"{sender}: {message}" for sender, message in conversation]) | |
prompt += f"\n\nHow would {current_char['name']} respond?" | |
try: | |
response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") | |
processed_response = process_character_response(response) | |
conversation.append((current_char['name'], processed_response)) | |
except Exception as e: | |
error_message = f"Error generating response: {str(e)}" | |
conversation.append((current_char['name'], error_message)) | |
return conversation, current_character | |
def character_interaction(character1: str, character2: str, api_endpoint: str, api_key: str, | |
num_turns: int, scenario: str, temperature: float, | |
user_interjection: str = "") -> List[str]: | |
characters = load_characters() | |
char1 = characters[character1] | |
char2 = characters[character2] | |
conversation = [] | |
current_speaker = char1 | |
other_speaker = char2 | |
# Add scenario to the conversation start | |
if scenario: | |
conversation.append(f"Scenario: {scenario}") | |
for turn in range(num_turns): | |
# Construct the prompt for the current speaker | |
prompt = f"{current_speaker['name']}'s personality: {current_speaker['personality']}\n" | |
prompt += f"{other_speaker['name']}'s personality: {other_speaker['personality']}\n" | |
prompt += f"Conversation so far:\n" + "\n".join( | |
[msg if isinstance(msg, str) else f"{msg[0]}: {msg[1]}" for msg in conversation]) | |
# Add user interjection if provided | |
if user_interjection and turn == num_turns // 2: | |
prompt += f"\n\nUser interjection: {user_interjection}\n" | |
conversation.append(f"User: {user_interjection}") | |
prompt += f"\n\nHow would {current_speaker['name']} respond?" | |
# FIXME - figure out why the double print is happening | |
# Get response from the LLM | |
response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") | |
# Add the response to the conversation | |
conversation.append((current_speaker['name'], response)) | |
# Switch speakers | |
current_speaker, other_speaker = other_speaker, current_speaker | |
# Convert the conversation to a list of strings for output | |
return [f"{msg[0]}: {msg[1]}" if isinstance(msg, tuple) else msg for msg in conversation] | |
def create_multiple_character_chat_tab(): | |
with gr.TabItem("Multi-Character Chat", visible=True): | |
characters, conversation, current_character, other_character = character_interaction_setup() | |
with gr.Blocks() as character_interaction: | |
gr.Markdown("# Multi-Character Chat") | |
with gr.Row(): | |
num_characters = gr.Dropdown(label="Number of Characters", choices=["2", "3", "4"], value="2") | |
character_selectors = [gr.Dropdown(label=f"Character {i + 1}", choices=list(characters.keys())) for i in | |
range(4)] | |
api_endpoint = gr.Dropdown(label="API Endpoint", | |
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", | |
"Mistral", | |
"OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", | |
"ollama", "HuggingFace", | |
"Custom-OpenAI-API"], | |
value="HuggingFace") | |
api_key = gr.Textbox(label="API Key (if required)", type="password") | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) | |
scenario = gr.Textbox(label="Scenario (optional)", lines=3) | |
chat_display = gr.Chatbot(label="Character Interaction") | |
current_index = gr.State(0) | |
next_turn_btn = gr.Button("Next Turn") | |
narrator_input = gr.Textbox(label="Narrator Input", placeholder="Add a narration or description...") | |
add_narration_btn = gr.Button("Add Narration") | |
error_box = gr.Textbox(label="Error Messages", visible=False) | |
reset_btn = gr.Button("Reset Conversation") | |
chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) | |
save_chat_history_to_db = gr.Button("Save Chat History to DataBase") | |
def update_character_selectors(num): | |
return [gr.update(visible=True) if i < int(num) else gr.update(visible=False) for i in range(4)] | |
num_characters.change( | |
update_character_selectors, | |
inputs=[num_characters], | |
outputs=character_selectors | |
) | |
def reset_conversation(): | |
return [], 0, gr.update(value=""), gr.update(value="") | |
def take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, | |
scenario): | |
char_selectors = [char for char in [char1, char2, char3, char4] if char] # Remove None values | |
num_chars = len(char_selectors) | |
if num_chars == 0: | |
return conversation, current_index # No characters selected, return without changes | |
if not conversation: | |
conversation = [] | |
if scenario: | |
conversation.append(("Scenario", scenario)) | |
current_character = char_selectors[current_index % num_chars] | |
next_index = (current_index + 1) % num_chars | |
prompt = f"Character speaking: {current_character}\nOther characters: {', '.join(char for char in char_selectors if char != current_character)}\n" | |
prompt += "Generate the next part of the conversation, including character dialogues and actions. Characters should speak in first person." | |
response, new_conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", | |
None, False, temperature, "") | |
# Format the response | |
formatted_lines = [] | |
for line in response.split('\n'): | |
if ':' in line: | |
speaker, text = line.split(':', 1) | |
formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}") | |
else: | |
formatted_lines.append(line) | |
formatted_response = '\n'.join(formatted_lines) | |
# Update the last message in the conversation with the formatted response | |
if new_conversation: | |
new_conversation[-1] = (new_conversation[-1][0], formatted_response) | |
else: | |
new_conversation.append((current_character, formatted_response)) | |
return new_conversation, next_index | |
def add_narration(narration, conversation): | |
if narration: | |
conversation.append(("Narrator", narration)) | |
return conversation, "" | |
def take_turn_with_error_handling(conversation, current_index, char1, char2, char3, char4, api_endpoint, | |
api_key, temperature, scenario): | |
try: | |
new_conversation, next_index = take_turn(conversation, current_index, char1, char2, char3, char4, | |
api_endpoint, api_key, temperature, scenario) | |
return new_conversation, next_index, gr.update(visible=False, value="") | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return conversation, current_index, gr.update(visible=True, value=error_message) | |
# Define States for conversation_id and media_content, which are required for saving chat history | |
media_content = gr.State({}) | |
conversation_id = gr.State(str(uuid.uuid4())) | |
next_turn_btn.click( | |
take_turn_with_error_handling, | |
inputs=[chat_display, current_index] + character_selectors + [api_endpoint, api_key, temperature, | |
scenario], | |
outputs=[chat_display, current_index, error_box] | |
) | |
add_narration_btn.click( | |
add_narration, | |
inputs=[narrator_input, chat_display], | |
outputs=[chat_display, narrator_input] | |
) | |
reset_btn.click( | |
reset_conversation, | |
outputs=[chat_display, current_index, scenario, narrator_input] | |
) | |
# FIXME - Implement saving chat history to database; look at Chat_UI.py for reference | |
save_chat_history_to_db.click( | |
save_chat_history_to_db_wrapper, | |
inputs=[chat_display, conversation_id, media_content, chat_media_name], | |
outputs=[conversation_id, gr.Textbox(label="Save Status")] | |
) | |
return character_interaction | |
# | |
# End of Multi-Character chat tab | |
######################################################################################################################## | |
# | |
# Narrator-Controlled Conversation Tab | |
# From `Fuzzlewumper` on Reddit. | |
def create_narrator_controlled_conversation_tab(): | |
with gr.TabItem("Narrator-Controlled Conversation", visible=True): | |
gr.Markdown("# Narrator-Controlled Conversation") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
api_endpoint = gr.Dropdown( | |
label="API Endpoint", | |
choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", | |
"OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", | |
"Custom-OpenAI-API"], | |
value="HuggingFace" | |
) | |
api_key = gr.Textbox(label="API Key (if required)", type="password") | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) | |
with gr.Column(scale=2): | |
narrator_input = gr.Textbox( | |
label="Narrator Input", | |
placeholder="Set the scene or provide context...", | |
lines=3 | |
) | |
character_inputs = [] | |
for i in range(4): # Allow up to 4 characters | |
with gr.Row(): | |
name = gr.Textbox(label=f"Character {i + 1} Name") | |
description = gr.Textbox(label=f"Character {i + 1} Description", lines=3) | |
character_inputs.append((name, description)) | |
conversation_display = gr.Chatbot(label="Conversation", height=400) | |
user_input = gr.Textbox(label="Your Input (optional)", placeholder="Add your own dialogue or action...") | |
with gr.Row(): | |
generate_btn = gr.Button("Generate Next Interaction") | |
reset_btn = gr.Button("Reset Conversation") | |
chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) | |
save_chat_history_to_db = gr.Button("Save Chat History to DataBase") | |
error_box = gr.Textbox(label="Error Messages", visible=False) | |
# Define States for conversation_id and media_content, which are required for saving chat history | |
conversation_id = gr.State(str(uuid.uuid4())) | |
media_content = gr.State({}) | |
def generate_interaction(conversation, narrator_text, user_text, api_endpoint, api_key, temperature, | |
*character_data): | |
try: | |
characters = [{"name": name.strip(), "description": desc.strip()} | |
for name, desc in zip(character_data[::2], character_data[1::2]) | |
if name.strip() and desc.strip()] | |
if not characters: | |
raise ValueError("At least one character must be defined.") | |
prompt = f"Narrator: {narrator_text}\n\n" | |
for char in characters: | |
prompt += f"Character '{char['name']}': {char['description']}\n" | |
prompt += "\nGenerate the next part of the conversation, including character dialogues and actions. " | |
prompt += "Characters should speak in first person. " | |
if user_text: | |
prompt += f"\nIncorporate this user input: {user_text}" | |
prompt += "\nResponse:" | |
response, conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, | |
False, temperature, "") | |
# Format the response | |
formatted_lines = [] | |
for line in response.split('\n'): | |
if ':' in line: | |
speaker, text = line.split(':', 1) | |
formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}") | |
else: | |
formatted_lines.append(line) | |
formatted_response = '\n'.join(formatted_lines) | |
# Update the last message in the conversation with the formatted response | |
if conversation: | |
conversation[-1] = (conversation[-1][0], formatted_response) | |
else: | |
conversation.append((None, formatted_response)) | |
return conversation, gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="") | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return conversation, gr.update(), gr.update(), gr.update(visible=True, value=error_message) | |
def reset_conversation(): | |
return [], gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="") | |
generate_btn.click( | |
generate_interaction, | |
inputs=[conversation_display, narrator_input, user_input, api_endpoint, api_key, temperature] + | |
[input for char_input in character_inputs for input in char_input], | |
outputs=[conversation_display, narrator_input, user_input, error_box] | |
) | |
reset_btn.click( | |
reset_conversation, | |
outputs=[conversation_display, narrator_input, user_input, error_box] | |
) | |
# FIXME - Implement saving chat history to database; look at Chat_UI.py for reference | |
save_chat_history_to_db.click( | |
save_chat_history_to_db_wrapper, | |
inputs=[conversation_display, conversation_id, media_content, chat_media_name], | |
outputs=[conversation_id, gr.Textbox(label="Save Status")] | |
) | |
return api_endpoint, api_key, temperature, narrator_input, conversation_display, user_input, generate_btn, reset_btn, error_box | |
# | |
# End of Narrator-Controlled Conversation tab | |
######################################################################################################################## |