Spaces:
Running
Running
# Diarization_Lib.py | |
######################################### | |
# Diarization Library | |
# This library is used to perform diarization of audio files. | |
# Currently, uses FIXME for transcription. | |
# | |
#################### | |
#################### | |
# Function List | |
# | |
# 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0) | |
# | |
#################### | |
# Import necessary libraries | |
import logging | |
from pathlib import Path | |
from typing import Dict, List, Any | |
# | |
# Import Local Libraries | |
from App_Function_Libraries.Audio.Audio_Transcription_Lib import speech_to_text | |
# | |
# Import 3rd Party Libraries | |
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization | |
import yaml | |
# | |
####################################################################################################################### | |
# Function Definitions | |
# | |
def load_pipeline_from_pretrained(path_to_config: str | Path) -> SpeakerDiarization: | |
path_to_config = Path(path_to_config).resolve() | |
logging.debug(f"Loading pyannote pipeline from {path_to_config}...") | |
if not path_to_config.exists(): | |
raise FileNotFoundError(f"Config file not found: {path_to_config}") | |
# Load the YAML configuration | |
with open(path_to_config, 'r') as config_file: | |
config = yaml.safe_load(config_file) | |
# Debug: print the entire config | |
logging.debug(f"Loaded config: {config}") | |
# Create the SpeakerDiarization pipeline | |
try: | |
pipeline = SpeakerDiarization( | |
segmentation=config['pipeline']['params']['segmentation'], | |
embedding=config['pipeline']['params']['embedding'], | |
clustering=config['pipeline']['params']['clustering'], | |
) | |
except KeyError as e: | |
logging.error(f"Error accessing config key: {e}") | |
raise | |
# Set other parameters | |
try: | |
pipeline_params = { | |
"segmentation": {}, | |
"clustering": {}, | |
} | |
if 'params' in config and 'segmentation' in config['params']: | |
if 'min_duration_off' in config['params']['segmentation']: | |
pipeline_params["segmentation"]["min_duration_off"] = config['params']['segmentation']['min_duration_off'] | |
if 'params' in config and 'clustering' in config['params']: | |
if 'method' in config['params']['clustering']: | |
pipeline_params["clustering"]["method"] = config['params']['clustering']['method'] | |
if 'min_cluster_size' in config['params']['clustering']: | |
pipeline_params["clustering"]["min_cluster_size"] = config['params']['clustering']['min_cluster_size'] | |
if 'threshold' in config['params']['clustering']: | |
pipeline_params["clustering"]["threshold"] = config['params']['clustering']['threshold'] | |
if 'pipeline' in config and 'params' in config['pipeline']: | |
if 'embedding_batch_size' in config['pipeline']['params']: | |
pipeline_params["embedding_batch_size"] = config['pipeline']['params']['embedding_batch_size'] | |
if 'embedding_exclude_overlap' in config['pipeline']['params']: | |
pipeline_params["embedding_exclude_overlap"] = config['pipeline']['params']['embedding_exclude_overlap'] | |
if 'segmentation_batch_size' in config['pipeline']['params']: | |
pipeline_params["segmentation_batch_size"] = config['pipeline']['params']['segmentation_batch_size'] | |
logging.debug(f"Pipeline params: {pipeline_params}") | |
pipeline.instantiate(pipeline_params) | |
except KeyError as e: | |
logging.error(f"Error accessing config key: {e}") | |
raise | |
except Exception as e: | |
logging.error(f"Error instantiating pipeline: {e}") | |
raise | |
return pipeline | |
def audio_diarization(audio_file_path: str) -> list: | |
logging.info('audio-diarization: Loading pyannote pipeline') | |
base_dir = Path(__file__).parent.resolve() | |
config_path = base_dir / 'models' / 'pyannote_diarization_config.yaml' | |
logging.info(f"audio-diarization: Loading pipeline from {config_path}") | |
try: | |
pipeline = load_pipeline_from_pretrained(config_path) | |
except Exception as e: | |
logging.error(f"Failed to load pipeline: {str(e)}") | |
raise | |
logging.info(f"audio-diarization: Audio file path: {audio_file_path}") | |
try: | |
logging.info('audio-diarization: Starting diarization...') | |
diarization_result = pipeline(audio_file_path) | |
segments = [] | |
for turn, _, speaker in diarization_result.itertracks(yield_label=True): | |
segment = { | |
"start": turn.start, | |
"end": turn.end, | |
"speaker": speaker | |
} | |
logging.debug(f"Segment: {segment}") | |
segments.append(segment) | |
logging.info("audio-diarization: Diarization completed with pyannote") | |
return segments | |
except Exception as e: | |
logging.error(f"audio-diarization: Error performing diarization: {str(e)}") | |
raise RuntimeError("audio-diarization: Error performing diarization") from e | |
# Old | |
# def audio_diarization(audio_file_path): | |
# logging.info('audio-diarization: Loading pyannote pipeline') | |
# | |
# #config file loading | |
# current_dir = os.path.dirname(os.path.abspath(__file__)) | |
# # Construct the path to the config file | |
# config_path = os.path.join(current_dir, 'Config_Files', 'config.txt') | |
# # Read the config file | |
# config = configparser.ConfigParser() | |
# config.read(config_path) | |
# processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') | |
# | |
# base_dir = Path(__file__).parent.resolve() | |
# config_path = base_dir / 'models' / 'config.yaml' | |
# pipeline = load_pipeline_from_pretrained(config_path) | |
# | |
# time_start = time.time() | |
# if audio_file_path is None: | |
# raise ValueError("audio-diarization: No audio file provided") | |
# logging.info("audio-diarization: Audio file path: %s", audio_file_path) | |
# | |
# try: | |
# _, file_ending = os.path.splitext(audio_file_path) | |
# out_file = audio_file_path.replace(file_ending, ".diarization.json") | |
# prettified_out_file = audio_file_path.replace(file_ending, ".diarization_pretty.json") | |
# if os.path.exists(out_file): | |
# logging.info("audio-diarization: Diarization file already exists: %s", out_file) | |
# with open(out_file) as f: | |
# global diarization_result | |
# diarization_result = json.load(f) | |
# return diarization_result | |
# | |
# logging.info('audio-diarization: Starting diarization...') | |
# diarization_result = pipeline(audio_file_path) | |
# | |
# segments = [] | |
# for turn, _, speaker in diarization_result.itertracks(yield_label=True): | |
# chunk = { | |
# "Time_Start": turn.start, | |
# "Time_End": turn.end, | |
# "Speaker": speaker | |
# } | |
# logging.debug("Segment: %s", chunk) | |
# segments.append(chunk) | |
# logging.info("audio-diarization: Diarization completed with pyannote") | |
# | |
# output_data = {'segments': segments} | |
# | |
# logging.info("audio-diarization: Saving prettified JSON to %s", prettified_out_file) | |
# with open(prettified_out_file, 'w') as f: | |
# json.dump(output_data, f, indent=2) | |
# | |
# logging.info("audio-diarization: Saving JSON to %s", out_file) | |
# with open(out_file, 'w') as f: | |
# json.dump(output_data, f) | |
# | |
# except Exception as e: | |
# logging.error("audio-diarization: Error performing diarization: %s", str(e)) | |
# raise RuntimeError("audio-diarization: Error performing diarization") | |
# return segments | |
def combine_transcription_and_diarization(audio_file_path: str) -> List[Dict[str, Any]]: | |
logging.info('combine-transcription-and-diarization: Starting transcription and diarization...') | |
try: | |
logging.info('Performing speech-to-text...') | |
transcription_result = speech_to_text(audio_file_path) | |
logging.info(f"Transcription result type: {type(transcription_result)}") | |
logging.info(f"Transcription result: {transcription_result[:3] if isinstance(transcription_result, list) and len(transcription_result) > 3 else transcription_result}") | |
logging.info('Performing audio diarization...') | |
diarization_result = audio_diarization(audio_file_path) | |
logging.info(f"Diarization result type: {type(diarization_result)}") | |
logging.info(f"Diarization result sample: {diarization_result[:3] if isinstance(diarization_result, list) and len(diarization_result) > 3 else diarization_result}") | |
if not transcription_result: | |
logging.error("Empty result from transcription") | |
return [] | |
if not diarization_result: | |
logging.error("Empty result from diarization") | |
return [] | |
# Handle the case where transcription_result is a dict with a 'segments' key | |
if isinstance(transcription_result, dict) and 'segments' in transcription_result: | |
transcription_segments = transcription_result['segments'] | |
elif isinstance(transcription_result, list): | |
transcription_segments = transcription_result | |
else: | |
logging.error(f"Unexpected transcription result format: {type(transcription_result)}") | |
return [] | |
logging.info(f"Number of transcription segments: {len(transcription_segments)}") | |
logging.info(f"Transcription segments sample: {transcription_segments[:3] if len(transcription_segments) > 3 else transcription_segments}") | |
if not isinstance(diarization_result, list): | |
logging.error(f"Unexpected diarization result format: {type(diarization_result)}") | |
return [] | |
combined_result = [] | |
for transcription_segment in transcription_segments: | |
if not isinstance(transcription_segment, dict): | |
logging.warning(f"Unexpected transcription segment format: {transcription_segment}") | |
continue | |
for diarization_segment in diarization_result: | |
if not isinstance(diarization_segment, dict): | |
logging.warning(f"Unexpected diarization segment format: {diarization_segment}") | |
continue | |
try: | |
trans_start = transcription_segment.get('Time_Start', 0) | |
trans_end = transcription_segment.get('Time_End', 0) | |
diar_start = diarization_segment.get('start', 0) | |
diar_end = diarization_segment.get('end', 0) | |
if trans_start >= diar_start and trans_end <= diar_end: | |
combined_segment = { | |
"Time_Start": trans_start, | |
"Time_End": trans_end, | |
"Speaker": diarization_segment.get('speaker', 'Unknown'), | |
"Text": transcription_segment.get('Text', '') | |
} | |
combined_result.append(combined_segment) | |
break | |
except Exception as e: | |
logging.error(f"Error processing segment: {str(e)}") | |
logging.error(f"Transcription segment: {transcription_segment}") | |
logging.error(f"Diarization segment: {diarization_segment}") | |
continue | |
logging.info(f"Combined result length: {len(combined_result)}") | |
logging.info(f"Combined result sample: {combined_result[:3] if len(combined_result) > 3 else combined_result}") | |
return combined_result | |
except Exception as e: | |
logging.error(f"Error in combine_transcription_and_diarization: {str(e)}", exc_info=True) | |
return [] | |
# | |
# | |
####################################################################################################################### |