Spaces:
Running
Running
#!/usr/bin/env python3 | |
import argparse | |
import asyncio | |
import atexit | |
import configparser | |
import hashlib | |
import json | |
import logging | |
import os | |
import platform | |
import re | |
import shutil | |
import signal | |
import sqlite3 | |
import subprocess | |
import sys | |
import time | |
from multiprocessing import process | |
from typing import List, Tuple, Optional, Dict, Callable | |
import zipfile | |
from datetime import datetime | |
from typing import List, Tuple | |
from typing import Optional | |
import webbrowser | |
from bs4 import BeautifulSoup | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from playwright.async_api import async_playwright | |
import requests | |
from requests.exceptions import RequestException | |
from SQLite_DB import * | |
import tiktoken | |
import trafilatura | |
import unicodedata | |
import yt_dlp | |
# OpenAI Tokenizer support | |
from openai import OpenAI | |
from tqdm import tqdm | |
import tiktoken | |
####################### | |
log_level = "DEBUG" | |
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s') | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
####### | |
# Function Sections | |
# | |
# Database Setup | |
# Config Loading | |
# System Checks | |
# DataBase Functions | |
# Processing Paths and local file handling | |
# Video Download/Handling | |
# Audio Transcription | |
# Diarization | |
# Chunking-related Techniques & Functions | |
# Tokenization-related Techniques & Functions | |
# Summarizers | |
# Gradio UI | |
# Main | |
# | |
####### | |
# To Do | |
# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb | |
#### | |
# | |
# TL/DW: Too Long Didn't Watch | |
# | |
# Project originally created by https://github.com/the-crypt-keeper | |
# Modifications made by https://github.com/rmusser01 | |
# All credit to the original authors, I've just glued shit together. | |
# | |
# | |
# Usage: | |
# | |
# Download Audio only from URL -> Transcribe audio: | |
# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s` | |
# | |
# Download Audio+Video from URL -> Transcribe audio from Video:** | |
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s` | |
# | |
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** | |
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable | |
# | |
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:** | |
# python summarize.py ./local/file_on_your/system --api_name <API_name>` | |
# | |
# Run it as a WebApp** | |
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it. | |
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server. | |
# | |
### | |
####################### | |
# Random issues I've encountered and how I solved them: | |
# 1. Something about cuda nn library missing, even though cuda is installed... | |
# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk. | |
# | |
# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme' | |
# Resolved through adding --user to the pip install command | |
# | |
# | |
####################### | |
####################### | |
# DB Setup | |
# Handled by SQLite_DB.py | |
####################### | |
###################### | |
# Global Variables | |
global local_llm_model, \ | |
userOS, \ | |
processing_choice, \ | |
segments, \ | |
detail_level_number, \ | |
summary, \ | |
audio_file, \ | |
detail_level | |
process = None | |
####################### | |
# Config loading | |
# | |
# Read configuration from file | |
config = configparser.ConfigParser() | |
config.read('config.txt') | |
# API Keys | |
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None) | |
logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}") | |
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None) | |
logging.debug(f"Loaded cohere API Key: {cohere_api_key}") | |
groq_api_key = config.get('API', 'groq_api_key', fallback=None) | |
logging.debug(f"Loaded groq API Key: {groq_api_key}") | |
openai_api_key = config.get('API', 'openai_api_key', fallback=None) | |
logging.debug(f"Loaded openAI Face API Key: {openai_api_key}") | |
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) | |
logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}") | |
# Models | |
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') | |
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') | |
groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192') | |
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') | |
huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus') | |
# Local-Models | |
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') | |
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') | |
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') | |
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') | |
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') | |
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') | |
tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') | |
tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None) | |
vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions') | |
vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None) | |
# Chunk settings for timed chunking summarization | |
DEFAULT_CHUNK_DURATION = config.getint('Settings', 'chunk_duration', fallback='30') | |
WORDS_PER_SECOND = config.getint('Settings', 'words_per_second', fallback='3') | |
# Retrieve output paths from the configuration file | |
output_path = config.get('Paths', 'output_path', fallback='results') | |
# Retrieve processing choice from the configuration file | |
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') | |
# Log file | |
# logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG) | |
# | |
# | |
####################### | |
# Dirty hack - sue me. | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | |
whisper_models = ["small", "medium", "small.en", "medium.en"] | |
source_languages = { | |
"en": "English", | |
"zh": "Chinese", | |
"de": "German", | |
"es": "Spanish", | |
"ru": "Russian", | |
"ko": "Korean", | |
"fr": "French" | |
} | |
source_language_list = [key[0] for key in source_languages.items()] | |
print(r"""_____ _ ________ _ _ | |
|_ _|| | / /| _ \| | | | _ | |
| | | | / / | | | || | | |(_) | |
| | | | / / | | | || |/\| | | |
| | | |____ / / | |/ / \ /\ / _ | |
\_/ \_____//_/ |___/ \/ \/ (_) | |
_ _ | |
| | | | | |
| |_ ___ ___ | | ___ _ __ __ _ | |
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` | | |
| |_ | (_) || (_) | | || (_) || | | || (_| | _ | |
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) | |
__/ ||/ | |
|___/ | |
_ _ _ _ _ _ _ | |
| |(_) | | ( )| | | | | | | |
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ | |
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ | |
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | | |
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| | |
""") | |
time.sleep(1) | |
####################################################################################################################### | |
# System Checks | |
# | |
# | |
# Perform Platform Check | |
userOS = "" | |
def platform_check(): | |
global userOS | |
if platform.system() == "Linux": | |
print("Linux OS detected \n Running Linux appropriate commands") | |
userOS = "Linux" | |
elif platform.system() == "Windows": | |
print("Windows OS detected \n Running Windows appropriate commands") | |
userOS = "Windows" | |
else: | |
print("Other OS detected \n Maybe try running things manually?") | |
exit() | |
# Check for NVIDIA GPU and CUDA availability | |
def cuda_check(): | |
global processing_choice | |
try: | |
nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode() | |
if "NVIDIA-SMI" in nvidia_smi: | |
print("NVIDIA GPU with CUDA is available.") | |
processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available | |
else: | |
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") | |
processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available | |
except subprocess.CalledProcessError: | |
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") | |
processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails | |
# Ask user if they would like to use either their GPU or their CPU for transcription | |
def decide_cpugpu(): | |
global processing_choice | |
processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") | |
if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): | |
print("You've chosen to use the GPU.") | |
logging.debug("GPU is being used for processing") | |
processing_choice = "cuda" | |
elif processing_input.lower() == "cpu" or processing_input == "2": | |
print("You've chosen to use the CPU.") | |
logging.debug("CPU is being used for processing") | |
processing_choice = "cpu" | |
else: | |
print("Invalid choice. Please select either GPU or CPU.") | |
# check for existence of ffmpeg | |
def check_ffmpeg(): | |
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): | |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") | |
pass | |
else: | |
logging.debug("ffmpeg not installed on the local system/in local PATH") | |
print( | |
"ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of " | |
"choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") | |
if userOS == "Windows": | |
download_ffmpeg() | |
elif userOS == "Linux": | |
print( | |
"You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg'," | |
"'dnf install ffmpeg' or 'pacman', etc.") | |
else: | |
logging.debug("running an unsupported OS") | |
print("You're running an unspported/Un-tested OS") | |
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") | |
if exit_script == "y" or "yes" or "1": | |
exit() | |
# Download ffmpeg | |
def download_ffmpeg(): | |
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") | |
if user_choice.lower() == 'yes' or 'y' or '1': | |
print("Downloading ffmpeg") | |
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" | |
response = requests.get(url) | |
if response.status_code == 200: | |
print("Saving ffmpeg zip file") | |
logging.debug("Saving ffmpeg zip file") | |
zip_path = "ffmpeg-release-essentials.zip" | |
with open(zip_path, 'wb') as file: | |
file.write(response.content) | |
logging.debug("Extracting the 'ffmpeg.exe' file from the zip") | |
print("Extracting ffmpeg.exe from zip file to '/Bin' folder") | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe" | |
logging.debug("checking if the './Bin' folder exists, creating if not") | |
bin_folder = "Bin" | |
if not os.path.exists(bin_folder): | |
logging.debug("Creating a folder for './Bin', it didn't previously exist") | |
os.makedirs(bin_folder) | |
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") | |
zip_ref.extract(ffmpeg_path, path=bin_folder) | |
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") | |
src_path = os.path.join(bin_folder, ffmpeg_path) | |
dst_path = os.path.join(bin_folder, "ffmpeg.exe") | |
shutil.move(src_path, dst_path) | |
logging.debug("Removing ffmpeg zip file") | |
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") | |
os.remove(zip_path) | |
logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") | |
print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") | |
else: | |
logging.error("Failed to download the zip file.") | |
print("Failed to download the zip file.") | |
else: | |
logging.debug("User chose to not download ffmpeg") | |
print("ffmpeg will not be downloaded.") | |
# | |
# | |
####################################################################################################################### | |
######################################################################################################################## | |
# DB Setup | |
# | |
# | |
# FIXME | |
# DB Functions | |
# create_tables() | |
# add_keyword() | |
# delete_keyword() | |
# add_keyword() | |
# add_media_with_keywords() | |
# search_db() | |
# format_results() | |
# search_and_display() | |
# export_to_csv() | |
# is_valid_url() | |
# is_valid_date() | |
# | |
# | |
######################################################################################################################## | |
######################################################################################################################## | |
# Processing Paths and local file handling | |
# | |
# | |
def read_paths_from_file(file_path): | |
""" Reads a file containing URLs or local file paths and returns them as a list. """ | |
paths = [] # Initialize paths as an empty list | |
with open(file_path, 'r') as file: | |
paths = [line.strip() for line in file] | |
return paths | |
def process_path(path): | |
""" Decides whether the path is a URL or a local file and processes accordingly. """ | |
if path.startswith('http'): | |
logging.debug("file is a URL") | |
# For YouTube URLs, modify to download and extract info | |
return get_youtube(path) | |
elif os.path.exists(path): | |
logging.debug("File is a path") | |
# For local files, define a function to handle them | |
return process_local_file(path) | |
else: | |
logging.error(f"Path does not exist: {path}") | |
return None | |
# FIXME | |
def process_local_file(file_path): | |
logging.info(f"Processing local file: {file_path}") | |
title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) | |
info_dict = {'title': title} | |
logging.debug(f"Creating {title} directory...") | |
download_path = create_download_directory(title) | |
logging.debug(f"Converting '{title}' to an audio file (wav).") | |
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction | |
logging.debug(f"'{title}' successfully converted to an audio file (wav).") | |
return download_path, info_dict, audio_file | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Online Article Extraction / Handling | |
# | |
def get_page_title(url: str) -> str: | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, 'html.parser') | |
title_tag = soup.find('title') | |
return title_tag.string.strip() if title_tag else "Untitled" | |
except requests.RequestException as e: | |
logging.error(f"Error fetching page title: {e}") | |
return "Untitled" | |
def get_article_text(url: str) -> str: | |
pass | |
def get_artice_title(article_url_arg: str) -> str: | |
# Use beautifulsoup to get the page title - Really should be using ytdlp for this.... | |
article_title = get_page_title(article_url_arg) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Video Download/Handling | |
# | |
def sanitize_filename(filename): | |
return re.sub(r'[<>:"/\\|?*]', '_', filename) | |
def get_video_info(url: str) -> dict: | |
ydl_opts = { | |
'quiet': True, | |
'no_warnings': True, | |
'skip_download': True, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
try: | |
info_dict = ydl.extract_info(url, download=False) | |
return info_dict | |
except Exception as e: | |
logging.error(f"Error extracting video info: {e}") | |
return None | |
def process_url(url, | |
num_speakers, | |
whisper_model, | |
custom_prompt, | |
offset, | |
api_name, | |
api_key, | |
vad_filter, | |
download_video, | |
download_audio, | |
rolling_summarization, | |
detail_level, | |
question_box, | |
keywords, | |
chunk_summarization, | |
chunk_duration_input, | |
words_per_second_input, | |
): | |
# Validate input | |
if not url: | |
return "No URL provided.", "No URL provided.", None, None, None, None, None, None | |
if not is_valid_url(url): | |
return "Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None | |
print("API Name received:", api_name) # Debugging line | |
logging.info(f"Processing URL: {url}") | |
video_file_path = None | |
try: | |
# Instantiate the database, db as a instance of the Database class | |
db = Database() | |
media_url = url | |
info_dict = get_youtube(url) # Extract video information using yt_dlp | |
media_title = info_dict['title'] if 'title' in info_dict else 'Untitled' | |
results = main(url, api_name=api_name, api_key=api_key, | |
num_speakers=num_speakers, | |
whisper_model=whisper_model, | |
offset=offset, | |
vad_filter=vad_filter, | |
download_video_flag=download_video, | |
custom_prompt=custom_prompt, | |
overwrite=args.overwrite, | |
rolling_summarization=rolling_summarization, | |
detail=detail_level, | |
keywords=keywords, | |
chunk_summarization=chunk_summarization, | |
chunk_duration=chunk_duration_input, | |
words_per_second=words_per_second_input, | |
) | |
if not results: | |
return "No URL provided.", "No URL provided.", None, None, None, None, None, None | |
transcription_result = results[0] | |
transcription_text = json.dumps(transcription_result['transcription'], indent=2) | |
summary_text = transcription_result.get('summary', 'Summary not available') | |
# Prepare file paths for transcription and summary | |
# Sanitize filenames | |
audio_file_sanitized = sanitize_filename(transcription_result['audio_file']) | |
json_file_path = audio_file_sanitized.replace('.wav', '.segments_pretty.json') | |
summary_file_path = audio_file_sanitized.replace('.wav', '_summary.txt') | |
logging.debug(f"Transcription result: {transcription_result}") | |
logging.debug(f"Audio file path: {transcription_result['audio_file']}") | |
# Write the transcription to the JSON File | |
try: | |
with open(json_file_path, 'w') as json_file: | |
json.dump(transcription_result['transcription'], json_file, indent=2) | |
except IOError as e: | |
logging.error(f"Error writing transcription to JSON file: {e}") | |
# Write the summary to the summary file | |
with open(summary_file_path, 'w') as summary_file: | |
summary_file.write(summary_text) | |
if download_video: | |
video_file_path = transcription_result['video_path'] if 'video_path' in transcription_result else None | |
# Check if files exist before returning paths | |
if not os.path.exists(json_file_path): | |
raise FileNotFoundError(f"File not found: {json_file_path}") | |
if not os.path.exists(summary_file_path): | |
raise FileNotFoundError(f"File not found: {summary_file_path}") | |
formatted_transcription = format_transcription(transcription_result) | |
# Check for chunk summarization | |
if chunk_summarization: | |
chunk_duration = chunk_duration_input if chunk_duration_input else DEFAULT_CHUNK_DURATION | |
words_per_second = words_per_second_input if words_per_second_input else WORDS_PER_SECOND | |
summary_text = summarize_chunks(api_name, api_key, transcription_result['transcription'], chunk_duration, | |
words_per_second) | |
# FIXME - This is a mess | |
# # Check for time-based chunking summarization | |
# if time_based_summarization: | |
# logging.info("MAIN: Time-based Summarization") | |
# | |
# # Set the json_file_path | |
# json_file_path = audio_file.replace('.wav', '.segments.json') | |
# | |
# # Perform time-based summarization | |
# summary = time_chunk_summarize(api_name, api_key, json_file_path, time_chunk_duration, custom_prompt) | |
# | |
# # Handle the summarized output | |
# if summary: | |
# transcription_result['summary'] = summary | |
# logging.info("MAIN: Time-based Summarization successful.") | |
# save_summary_to_file(summary, json_file_path) | |
# else: | |
# logging.warning("MAIN: Time-based Summarization failed.") | |
# Add media to the database | |
try: | |
# Ensure these variables are correctly populated | |
custom_prompt = args.custom_prompt if args.custom_prompt else ("\n\nabove is the transcript of a video " | |
"Please read through the transcript carefully. Identify the main topics that are discussed over the " | |
"course of the transcript. Then, summarize the key points about each main topic in a concise bullet " | |
"point. The bullet points should cover the key information conveyed about each topic in the video, " | |
"but should be much shorter than the full transcript. Please output your bullet point summary inside " | |
"<bulletpoints> tags.") | |
db = Database() | |
create_tables() | |
media_url = url | |
# FIXME - IDK? | |
video_info = get_video_info(media_url) | |
media_title = get_page_title(media_url) | |
media_type = "video" | |
media_content = transcription_text | |
keyword_list = keywords.split(',') if keywords else ["default"] | |
media_keywords = ', '.join(keyword_list) | |
media_author = "auto_generated" | |
media_ingestion_date = datetime.now().strftime('%Y-%m-%d') | |
transcription_model = whisper_model # Add the transcription model used | |
# Log the values before calling the function | |
logging.info(f"Media URL: {media_url}") | |
logging.info(f"Media Title: {media_title}") | |
logging.info(f"Media Type: {media_type}") | |
logging.info(f"Media Content: {media_content}") | |
logging.info(f"Media Keywords: {media_keywords}") | |
logging.info(f"Media Author: {media_author}") | |
logging.info(f"Ingestion Date: {media_ingestion_date}") | |
logging.info(f"Custom Prompt: {custom_prompt}") | |
logging.info(f"Summary Text: {summary_text}") | |
logging.info(f"Transcription Model: {transcription_model}") | |
# Check if any required field is empty | |
if not media_url or not media_title or not media_type or not media_content or not media_keywords or not custom_prompt or not summary_text: | |
raise InputError("Please provide all required fields.") | |
add_media_with_keywords( | |
url=media_url, | |
title=media_title, | |
media_type=media_type, | |
content=media_content, | |
keywords=media_keywords, | |
prompt=custom_prompt, | |
summary=summary_text, | |
transcription_model=transcription_model, # Pass the transcription model | |
author=media_author, | |
ingestion_date=media_ingestion_date | |
) | |
except Exception as e: | |
logging.error(f"Failed to add media to the database: {e}") | |
if summary_file_path and os.path.exists(summary_file_path): | |
return transcription_text, summary_text, json_file_path, summary_file_path, video_file_path, None # audio_file_path | |
else: | |
return transcription_text, summary_text, json_file_path, None, video_file_path, None # audio_file_path | |
except Exception as e: | |
logging.error(f"Error processing URL: {e}") | |
return str(e), 'Error processing the request.', None, None, None, None | |
def create_download_directory(title): | |
base_dir = "Results" | |
# Remove characters that are illegal in Windows filenames and normalize | |
safe_title = normalize_title(title) | |
logging.debug(f"{title} successfully normalized") | |
session_path = os.path.join(base_dir, safe_title) | |
if not os.path.exists(session_path): | |
os.makedirs(session_path, exist_ok=True) | |
logging.debug(f"Created directory for downloaded video: {session_path}") | |
else: | |
logging.debug(f"Directory already exists for downloaded video: {session_path}") | |
return session_path | |
def normalize_title(title): | |
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters | |
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') | |
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', | |
'').replace( | |
'<', '').replace('>', '').replace('|', '') | |
return title | |
def get_youtube(video_url): | |
ydl_opts = { | |
'format': 'bestaudio[ext=m4a]', | |
'noplaylist': False, | |
'quiet': True, | |
'extract_flat': True | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
logging.debug("About to extract youtube info") | |
info_dict = ydl.extract_info(video_url, download=False) | |
logging.debug("Youtube info successfully extracted") | |
return info_dict | |
def get_playlist_videos(playlist_url): | |
ydl_opts = { | |
'extract_flat': True, | |
'skip_download': True, | |
'quiet': True | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(playlist_url, download=False) | |
if 'entries' in info: | |
video_urls = [entry['url'] for entry in info['entries']] | |
playlist_title = info['title'] | |
return video_urls, playlist_title | |
else: | |
print("No videos found in the playlist.") | |
return [], None | |
def save_to_file(video_urls, filename): | |
with open(filename, 'w') as file: | |
file.write('\n'.join(video_urls)) | |
print(f"Video URLs saved to {filename}") | |
def download_video(video_url, download_path, info_dict, download_video_flag): | |
logging.debug("About to normalize downloaded video title") | |
title = normalize_title(info_dict['title']) | |
if not download_video_flag: | |
file_path = os.path.join(download_path, f"{title}.m4a") | |
ydl_opts = { | |
'format': 'bestaudio[ext=m4a]', | |
'outtmpl': file_path, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
logging.debug("yt_dlp: About to download audio with youtube-dl") | |
ydl.download([video_url]) | |
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") | |
return file_path | |
else: | |
video_file_path = os.path.join(download_path, f"{title}_video.mp4") | |
audio_file_path = os.path.join(download_path, f"{title}_audio.m4a") | |
ydl_opts_video = { | |
'format': 'bestvideo[ext=mp4]', | |
'outtmpl': video_file_path, | |
} | |
ydl_opts_audio = { | |
'format': 'bestaudio[ext=m4a]', | |
'outtmpl': audio_file_path, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: | |
logging.debug("yt_dlp: About to download video with youtube-dl") | |
ydl.download([video_url]) | |
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") | |
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl: | |
logging.debug("yt_dlp: About to download audio with youtube-dl") | |
ydl.download([video_url]) | |
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") | |
output_file_path = os.path.join(download_path, f"{title}.mp4") | |
if sys.platform.startswith('win'): | |
logging.debug("Running ffmpeg on Windows...") | |
ffmpeg_command = [ | |
'.\\Bin\\ffmpeg.exe', | |
'-i', video_file_path, | |
'-i', audio_file_path, | |
'-c:v', 'copy', | |
'-c:a', 'copy', | |
output_file_path | |
] | |
subprocess.run(ffmpeg_command, check=True) | |
elif userOS == "Linux": | |
logging.debug("Running ffmpeg on Linux...") | |
ffmpeg_command = [ | |
'ffmpeg', | |
'-i', video_file_path, | |
'-i', audio_file_path, | |
'-c:v', 'copy', | |
'-c:a', 'copy', | |
output_file_path | |
] | |
subprocess.run(ffmpeg_command, check=True) | |
else: | |
logging.error("ffmpeg: Unsupported operating system for video download and merging.") | |
raise RuntimeError("ffmpeg: Unsupported operating system for video download and merging.") | |
os.remove(video_file_path) | |
os.remove(audio_file_path) | |
return output_file_path | |
def read_paths_from_file(file_path: str) -> List[str]: | |
"""Read paths from a text file.""" | |
with open(file_path, 'r') as file: | |
paths = file.readlines() | |
return [path.strip() for path in paths] | |
def save_summary_to_file(summary: str, file_path: str): | |
"""Save summary to a JSON file.""" | |
summary_data = {'summary': summary, 'generated_at': datetime.now().isoformat()} | |
with open(file_path, 'w') as file: | |
json.dump(summary_data, file, indent=4) | |
def extract_text_from_segments(segments: List[Dict]) -> str: | |
"""Extract text from segments.""" | |
return " ".join([segment['text'] for segment in segments]) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Audio Transcription | |
# | |
# Convert video .m4a into .wav using ffmpeg | |
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav" | |
# https://www.gyan.dev/ffmpeg/builds/ | |
# | |
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') | |
def convert_to_wav(video_file_path, offset=0, overwrite=False): | |
out_path = os.path.splitext(video_file_path)[0] + ".wav" | |
if os.path.exists(out_path) and not overwrite: | |
print(f"File '{out_path}' already exists. Skipping conversion.") | |
logging.info(f"Skipping conversion as file already exists: {out_path}") | |
return out_path | |
print("Starting conversion process of .m4a to .WAV") | |
out_path = os.path.splitext(video_file_path)[0] + ".wav" | |
try: | |
if os.name == "nt": | |
logging.debug("ffmpeg being ran on windows") | |
if sys.platform.startswith('win'): | |
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe" | |
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}") | |
else: | |
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems | |
command = [ | |
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists | |
"-ss", "00:00:00", # Start at the beginning of the video | |
"-i", video_file_path, | |
"-ar", "16000", # Audio sample rate | |
"-ac", "1", # Number of audio channels | |
"-c:a", "pcm_s16le", # Audio codec | |
out_path | |
] | |
try: | |
# Redirect stdin from null device to prevent ffmpeg from waiting for input | |
with open(os.devnull, 'rb') as null_file: | |
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True) | |
if result.returncode == 0: | |
logging.info("FFmpeg executed successfully") | |
logging.debug("FFmpeg output: %s", result.stdout) | |
else: | |
logging.error("Error in running FFmpeg") | |
logging.error("FFmpeg stderr: %s", result.stderr) | |
raise RuntimeError(f"FFmpeg error: {result.stderr}") | |
except Exception as e: | |
logging.error("Error occurred - ffmpeg doesn't like windows") | |
raise RuntimeError("ffmpeg failed") | |
elif os.name == "posix": | |
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') | |
else: | |
raise RuntimeError("Unsupported operating system") | |
logging.info("Conversion to WAV completed: %s", out_path) | |
except subprocess.CalledProcessError as e: | |
logging.error("Error executing FFmpeg command: %s", str(e)) | |
raise RuntimeError("Error converting video file to WAV") | |
except Exception as e: | |
logging.error("Unexpected error occurred: %s", str(e)) | |
raise RuntimeError("Error converting video file to WAV") | |
return out_path | |
# Transcribe .wav into .segments.json | |
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False): | |
logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model) | |
from faster_whisper import WhisperModel | |
model = WhisperModel(whisper_model, device=f"{processing_choice}") | |
time_start = time.time() | |
if audio_file_path is None: | |
raise ValueError("speech-to-text: No audio file provided") | |
logging.info("speech-to-text: Audio file path: %s", audio_file_path) | |
try: | |
_, file_ending = os.path.splitext(audio_file_path) | |
out_file = audio_file_path.replace(file_ending, ".segments.json") | |
prettified_out_file = audio_file_path.replace(file_ending, ".segments_pretty.json") | |
if os.path.exists(out_file): | |
logging.info("speech-to-text: Segments file already exists: %s", out_file) | |
with open(out_file) as f: | |
global segments | |
segments = json.load(f) | |
return segments | |
logging.info('speech-to-text: Starting transcription...') | |
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter) | |
transcribe_options = dict(task="transcribe", **options) | |
segments_raw, info = model.transcribe(audio_file_path, **transcribe_options) | |
segments = [] | |
for segment_chunk in segments_raw: | |
chunk = { | |
"start": segment_chunk.start, | |
"end": segment_chunk.end, | |
"text": segment_chunk.text | |
} | |
logging.debug("Segment: %s", chunk) | |
segments.append(chunk) | |
logging.info("speech-to-text: Transcription completed with faster_whisper") | |
# Save prettified JSON | |
with open(prettified_out_file, 'w') as f: | |
json.dump(segments, f, indent=2) | |
# Save non-prettified JSON | |
with open(out_file, 'w') as f: | |
json.dump(segments, f) | |
except Exception as e: | |
logging.error("speech-to-text: Error transcribing audio: %s", str(e)) | |
raise RuntimeError("speech-to-text: Error transcribing audio") | |
return segments | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Diarization | |
# | |
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1 | |
# embedding_model = "pyannote/embedding", embedding_size=512 | |
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192 | |
# def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0): | |
# """ | |
# 1. Generating speaker embeddings for each segments. | |
# 2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. | |
# """ | |
# try: | |
# from pyannote.audio import Audio | |
# from pyannote.core import Segment | |
# from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding | |
# import numpy as np | |
# import pandas as pd | |
# from sklearn.cluster import AgglomerativeClustering | |
# from sklearn.metrics import silhouette_score | |
# import tqdm | |
# import wave | |
# | |
# embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
# | |
# | |
# _,file_ending = os.path.splitext(f'{video_file_path}') | |
# audio_file = video_file_path.replace(file_ending, ".wav") | |
# out_file = video_file_path.replace(file_ending, ".diarize.json") | |
# | |
# logging.debug("getting duration of audio file") | |
# with contextlib.closing(wave.open(audio_file,'r')) as f: | |
# frames = f.getnframes() | |
# rate = f.getframerate() | |
# duration = frames / float(rate) | |
# logging.debug("duration of audio file obtained") | |
# print(f"duration of audio file: {duration}") | |
# | |
# def segment_embedding(segment): | |
# logging.debug("Creating embedding") | |
# audio = Audio() | |
# start = segment["start"] | |
# end = segment["end"] | |
# | |
# # Enforcing a minimum segment length | |
# if end-start < 0.3: | |
# padding = 0.3-(end-start) | |
# start -= padding/2 | |
# end += padding/2 | |
# print('Padded segment because it was too short:',segment) | |
# | |
# # Whisper overshoots the end timestamp in the last segment | |
# end = min(duration, end) | |
# # clip audio and embed | |
# clip = Segment(start, end) | |
# waveform, sample_rate = audio.crop(audio_file, clip) | |
# return embedding_model(waveform[None]) | |
# | |
# embeddings = np.zeros(shape=(len(segments), embedding_size)) | |
# for i, segment in enumerate(tqdm.tqdm(segments)): | |
# embeddings[i] = segment_embedding(segment) | |
# embeddings = np.nan_to_num(embeddings) | |
# print(f'Embedding shape: {embeddings.shape}') | |
# | |
# if num_speakers == 0: | |
# # Find the best number of speakers | |
# score_num_speakers = {} | |
# | |
# for num_speakers in range(2, 10+1): | |
# clustering = AgglomerativeClustering(num_speakers).fit(embeddings) | |
# score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') | |
# score_num_speakers[num_speakers] = score | |
# best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) | |
# print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") | |
# else: | |
# best_num_speaker = num_speakers | |
# | |
# # Assign speaker label | |
# clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) | |
# labels = clustering.labels_ | |
# for i in range(len(segments)): | |
# segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) | |
# | |
# with open(out_file,'w') as f: | |
# f.write(json.dumps(segments, indent=2)) | |
# | |
# # Make CSV output | |
# def convert_time(secs): | |
# return datetime.timedelta(seconds=round(secs)) | |
# | |
# objects = { | |
# 'Start' : [], | |
# 'End': [], | |
# 'Speaker': [], | |
# 'Text': [] | |
# } | |
# text = '' | |
# for (i, segment) in enumerate(segments): | |
# if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: | |
# objects['Start'].append(str(convert_time(segment["start"]))) | |
# objects['Speaker'].append(segment["speaker"]) | |
# if i != 0: | |
# objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
# objects['Text'].append(text) | |
# text = '' | |
# text += segment["text"] + ' ' | |
# objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
# objects['Text'].append(text) | |
# | |
# save_path = video_file_path.replace(file_ending, ".csv") | |
# df_results = pd.DataFrame(objects) | |
# df_results.to_csv(save_path) | |
# return df_results, save_path | |
# | |
# except Exception as e: | |
# raise RuntimeError("Error Running inference with local model", e) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Chunking-related Techniques & Functions | |
# | |
# | |
######### Words-per-second Chunking ######### | |
def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: | |
words = transcript.split() | |
words_per_chunk = chunk_duration * words_per_second | |
chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] | |
return chunks | |
def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, | |
words_per_second: int) -> str: | |
if api_name not in summarizers: # See 'summarizers' dict in the main script | |
return f"Unsupported API: {api_name}" | |
summarizer = summarizers[api_name] | |
text = extract_text_from_segments(transcript) | |
chunks = chunk_transcript(text, chunk_duration, words_per_second) | |
summaries = [] | |
for chunk in chunks: | |
if api_name == 'openai': | |
# Ensure the correct model and prompt are passed | |
summaries.append(summarizer(api_key, chunk, custom_prompt)) | |
else: | |
summaries.append(summarizer(api_key, chunk)) | |
return "\n\n".join(summaries) | |
################## #################### | |
######### Token-size Chunking ######### FIXME - OpenAI only currently | |
# This is dirty and shameful and terrible. It should be replaced with a proper implementation. | |
# anyways lets get to it.... | |
client = OpenAI(api_key=openai_api_key) | |
def get_chat_completion(messages, model='gpt-4-turbo'): | |
response = client.chat.completions.create( | |
model=model, | |
messages=messages, | |
temperature=0, | |
) | |
return response.choices[0].message.content | |
# This function chunks a text into smaller pieces based on a maximum token count and a delimiter | |
def chunk_on_delimiter(input_string: str, | |
max_tokens: int, | |
delimiter: str) -> List[str]: | |
chunks = input_string.split(delimiter) | |
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum( | |
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True) | |
if dropped_chunk_count > 0: | |
print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.") | |
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks] | |
return combined_chunks | |
# This function combines text chunks into larger blocks without exceeding a specified token count. | |
# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow. | |
def combine_chunks_with_no_minimum( | |
chunks: List[str], | |
max_tokens: int, | |
chunk_delimiter="\n\n", | |
header: Optional[str] = None, | |
add_ellipsis_for_overflow=False, | |
) -> Tuple[List[str], List[int]]: | |
dropped_chunk_count = 0 | |
output = [] # list to hold the final combined chunks | |
output_indices = [] # list to hold the indices of the final combined chunks | |
candidate = ( | |
[] if header is None else [header] | |
) # list to hold the current combined chunk candidate | |
candidate_indices = [] | |
for chunk_i, chunk in enumerate(chunks): | |
chunk_with_header = [chunk] if header is None else [header, chunk] | |
# FIXME MAKE NOT OPENAI SPECIFIC | |
if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens: | |
print(f"warning: chunk overflow") | |
if ( | |
add_ellipsis_for_overflow | |
# FIXME MAKE NOT OPENAI SPECIFIC | |
and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens | |
): | |
candidate.append("...") | |
dropped_chunk_count += 1 | |
continue # this case would break downstream assumptions | |
# estimate token count with the current chunk added | |
# FIXME MAKE NOT OPENAI SPECIFIC | |
extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk]))) | |
# If the token count exceeds max_tokens, add the current candidate to output and start a new candidate | |
if extended_candidate_token_count > max_tokens: | |
output.append(chunk_delimiter.join(candidate)) | |
output_indices.append(candidate_indices) | |
candidate = chunk_with_header # re-initialize candidate | |
candidate_indices = [chunk_i] | |
# otherwise keep extending the candidate | |
else: | |
candidate.append(chunk) | |
candidate_indices.append(chunk_i) | |
# add the remaining candidate to output if it's not empty | |
if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0): | |
output.append(chunk_delimiter.join(candidate)) | |
output_indices.append(candidate_indices) | |
return output, output_indices, dropped_chunk_count | |
def rolling_summarize(text: str, | |
detail: float = 0, | |
model: str = 'gpt-4-turbo', | |
additional_instructions: Optional[str] = None, | |
minimum_chunk_size: Optional[int] = 500, | |
chunk_delimiter: str = ".", | |
summarize_recursively=False, | |
verbose=False): | |
""" | |
Summarizes a given text by splitting it into chunks, each of which is summarized individually. | |
The level of detail in the summary can be adjusted, and the process can optionally be made recursive. | |
Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1 | |
indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more | |
detailed summary. Defaults to 0. - model (str, optional): The model to use for generating summaries. Defaults to | |
'gpt-3.5-turbo'. - additional_instructions (Optional[str], optional): Additional instructions to provide to the | |
model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text | |
chunks. Defaults to 500. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. | |
Defaults to ".". - summarize_recursively (bool, optional): If True, summaries are generated recursively, | |
using previous summaries for context. - verbose (bool, optional): If True, prints detailed information about the | |
chunking process. | |
Returns: | |
- str: The final compiled summary of the text. | |
The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count | |
based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If | |
`summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the | |
summarization process. The function returns a compiled summary of all chunks. | |
""" | |
# check detail is set correctly | |
assert 0 <= detail <= 1 | |
# interpolate the number of chunks based to get specified level of detail | |
max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter)) | |
min_chunks = 1 | |
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks)) | |
# adjust chunk_size based on interpolated number of chunks | |
# FIXME MAKE NOT OPENAI SPECIFIC | |
document_length = len(openai_tokenize(text)) | |
chunk_size = max(minimum_chunk_size, document_length // num_chunks) | |
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter) | |
if verbose: | |
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.") | |
# FIXME MAKE NOT OPENAI SPECIFIC | |
print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}") | |
# set system message | |
system_message_content = "Rewrite this text in summarized form." | |
if additional_instructions is not None: | |
system_message_content += f"\n\n{additional_instructions}" | |
accumulated_summaries = [] | |
for chunk in tqdm(text_chunks): | |
if summarize_recursively and accumulated_summaries: | |
# Creating a structured prompt for recursive summarization | |
accumulated_summaries_string = '\n\n'.join(accumulated_summaries) | |
user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}" | |
else: | |
# Directly passing the chunk for summarization without recursive context | |
user_message_content = chunk | |
# Constructing messages based on whether recursive summarization is applied | |
messages = [ | |
{"role": "system", "content": system_message_content}, | |
{"role": "user", "content": user_message_content} | |
] | |
# Assuming this function gets the completion and works as expected | |
response = get_chat_completion(messages, model=model) | |
accumulated_summaries.append(response) | |
# Compile final summary from partial summaries | |
global final_summary | |
final_summary = '\n\n'.join(accumulated_summaries) | |
return final_summary | |
####################################### | |
######### Words-per-second Chunking ######### | |
# FIXME - WHole section needs to be re-written | |
def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: | |
words = transcript.split() | |
words_per_chunk = chunk_duration * words_per_second | |
chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] | |
return chunks | |
def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, | |
words_per_second: int) -> str: | |
if api_name not in summarizers: # See 'summarizers' dict in the main script | |
return f"Unsupported API: {api_name}" | |
if not transcript: | |
logging.error("Empty or None transcript provided to summarize_chunks") | |
return "Error: Empty or None transcript provided" | |
text = extract_text_from_segments(transcript) | |
chunks = chunk_transcript(text, chunk_duration, words_per_second) | |
custom_prompt = args.custom_prompt | |
summaries = [] | |
for chunk in chunks: | |
if api_name == 'openai': | |
# Ensure the correct model and prompt are passed | |
summaries.append(summarize_with_openai(api_key, chunk, custom_prompt)) | |
elif api_name == 'anthropic': | |
summaries.append(summarize_with_cohere(api_key, chunk, anthropic_model, custom_prompt)) | |
elif api_name == 'cohere': | |
summaries.append(summarize_with_claude(api_key, chunk, cohere_model, custom_prompt)) | |
elif api_name == 'groq': | |
summaries.append(summarize_with_groq(api_key, chunk, groq_model, custom_prompt)) | |
elif api_name == 'llama': | |
summaries.append(summarize_with_llama(llama_api_IP, chunk, api_key, custom_prompt)) | |
elif api_name == 'kobold': | |
summaries.append(summarize_with_kobold(kobold_api_IP, chunk, api_key, custom_prompt)) | |
elif api_name == 'ooba': | |
summaries.append(summarize_with_oobabooga(ooba_api_IP, chunk, api_key, custom_prompt)) | |
elif api_name == 'tabbyapi': | |
summaries.append(summarize_with_vllm(api_key, tabby_api_IP, chunk, llm_model, custom_prompt)) | |
elif api_name == 'local-llm': | |
summaries.append(summarize_with_local_llm(chunk, custom_prompt)) | |
else: | |
return f"Unsupported API: {api_name}" | |
return "\n\n".join(summaries) | |
####################################### | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Tokenization-related Techniques & Functions | |
# | |
# | |
def openai_tokenize(text: str) -> List[str]: | |
encoding = tiktoken.encoding_for_model('gpt-4-turbo') | |
return encoding.encode(text) | |
# openai summarize chunks | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Website-related Techniques & Functions | |
# | |
# | |
def scrape_article(url): | |
async def fetch_html(url: str) -> str: | |
async with async_playwright() as p: | |
browser = await p.chromium.launch(headless=True) | |
context = await browser.new_context( | |
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3") | |
page = await context.new_page() | |
await page.goto(url) | |
await page.wait_for_load_state("networkidle") # Wait for the network to be idle | |
content = await page.content() | |
await browser.close() | |
return content | |
def extract_article_data(html: str) -> dict: | |
downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) | |
if downloaded: | |
metadata = trafilatura.extract_metadata(html) | |
if metadata: | |
return { | |
'title': metadata.title if metadata.title else 'N/A', | |
'author': metadata.author if metadata.author else 'N/A', | |
'content': downloaded, | |
'date': metadata.date if metadata.date else 'N/A', | |
} | |
else: | |
print("Metadata extraction failed.") | |
return None | |
else: | |
print("Content extraction failed.") | |
return None | |
def convert_html_to_markdown(html: str) -> str: | |
soup = BeautifulSoup(html, 'html.parser') | |
# Convert each paragraph to markdown | |
for para in soup.find_all('p'): | |
para.append('\n') # Add a newline at the end of each paragraph for markdown separation | |
# Use .get_text() with separator to keep paragraph separation | |
text = soup.get_text(separator='\n\n') | |
return text | |
async def fetch_and_extract_article(url: str): | |
html = await fetch_html(url) | |
print("HTML Content:", html[:500]) # Print first 500 characters of the HTML for inspection | |
article_data = extract_article_data(html) | |
if article_data: | |
article_data['content'] = convert_html_to_markdown(article_data['content']) | |
return article_data | |
else: | |
return None | |
# Using asyncio.run to handle event loop creation and execution | |
article_data = asyncio.run(fetch_and_extract_article(url)) | |
return article_data | |
def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt): | |
try: | |
# Check if content is not empty or whitespace | |
if not content.strip(): | |
raise ValueError("Content is empty.") | |
db = Database() | |
create_tables() | |
keyword_list = keywords.split(',') if keywords else ["default"] | |
keyword_str = ', '.join(keyword_list) | |
# Set default values for missing fields | |
url = url or 'Unknown' | |
title = title or 'Unknown' | |
author = author or 'Unknown' | |
keywords = keywords or 'default' | |
summary = summary or 'No summary available' | |
ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d') | |
# Log the values of all fields before calling add_media_with_keywords | |
logging.debug(f"URL: {url}") | |
logging.debug(f"Title: {title}") | |
logging.debug(f"Author: {author}") | |
logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content | |
logging.debug(f"Keywords: {keywords}") | |
logging.debug(f"Summary: {summary}") | |
logging.debug(f"Ingestion Date: {ingestion_date}") | |
logging.debug(f"Custom Prompt: {custom_prompt}") | |
# Check if any required field is empty and log the specific missing field | |
if not url: | |
logging.error("URL is missing.") | |
raise ValueError("URL is missing.") | |
if not title: | |
logging.error("Title is missing.") | |
raise ValueError("Title is missing.") | |
if not content: | |
logging.error("Content is missing.") | |
raise ValueError("Content is missing.") | |
if not keywords: | |
logging.error("Keywords are missing.") | |
raise ValueError("Keywords are missing.") | |
if not summary: | |
logging.error("Summary is missing.") | |
raise ValueError("Summary is missing.") | |
if not ingestion_date: | |
logging.error("Ingestion date is missing.") | |
raise ValueError("Ingestion date is missing.") | |
if not custom_prompt: | |
logging.error("Custom prompt is missing.") | |
raise ValueError("Custom prompt is missing.") | |
# Add media with keywords to the database | |
result = add_media_with_keywords( | |
url=url, | |
title=title, | |
media_type='article', | |
content=content, | |
keywords=keyword_str or "article_default", | |
prompt=custom_prompt or None, | |
summary=summary or "No summary generated", | |
transcription_model=None, # or some default value if applicable | |
author=author or 'Unknown', | |
ingestion_date=ingestion_date | |
) | |
return result | |
except Exception as e: | |
logging.error(f"Failed to ingest article to the database: {e}") | |
return str(e) | |
def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title): | |
# Step 1: Scrape the article | |
article_data = scrape_article(url) | |
print(f"Scraped Article Data: {article_data}") # Debugging statement | |
if not article_data: | |
return "Failed to scrape the article." | |
# Use the custom title if provided, otherwise use the scraped title | |
title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') | |
author = article_data.get('author', 'Unknown') | |
content = article_data.get('content', '') | |
ingestion_date = datetime.now().strftime('%Y-%m-%d') | |
print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement | |
# Custom prompt for the article | |
article_custom_prompt = custom_prompt_arg or "Summarize this article." | |
# Step 2: Summarize the article | |
summary = None | |
if api_name: | |
logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}") | |
# Sanitize filename for saving the JSON file | |
sanitized_title = sanitize_filename(title) | |
json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json") | |
with open(json_file_path, 'w') as json_file: | |
json.dump([{'text': content}], json_file, indent=2) | |
try: | |
if api_name.lower() == 'openai': | |
openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) | |
logging.debug(f"Article_Summarizer: trying to summarize with openAI") | |
summary = summarize_with_openai(openai_api_key, json_file_path, article_custom_prompt) | |
elif api_name.lower() == "anthropic": | |
anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', fallback=None) | |
logging.debug(f"Article_Summarizer: Trying to summarize with anthropic") | |
summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model, | |
custom_prompt_arg=article_custom_prompt) | |
elif api_name.lower() == "cohere": | |
cohere_api_key = api_key if api_key else config.get('API', 'cohere_api_key', fallback=None) | |
logging.debug(f"Article_Summarizer: Trying to summarize with cohere") | |
summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, | |
custom_prompt_arg=article_custom_prompt) | |
elif api_name.lower() == "groq": | |
groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None) | |
logging.debug(f"Article_Summarizer: Trying to summarize with Groq") | |
summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, | |
custom_prompt_arg=article_custom_prompt) | |
elif api_name.lower() == "llama": | |
llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) | |
llama_ip = llama_api_IP | |
logging.debug(f"Article_Summarizer: Trying to summarize with Llama.cpp") | |
summary = summarize_with_llama(llama_ip, json_file_path, llama_token, article_custom_prompt) | |
elif api_name.lower() == "kobold": | |
kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None) | |
kobold_ip = kobold_api_IP | |
logging.debug(f"Article_Summarizer: Trying to summarize with kobold.cpp") | |
summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, article_custom_prompt) | |
elif api_name.lower() == "ooba": | |
ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None) | |
ooba_ip = ooba_api_IP | |
logging.debug(f"Article_Summarizer: Trying to summarize with oobabooga") | |
summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, article_custom_prompt) | |
elif api_name.lower() == "tabbyapi": | |
tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None) | |
tabbyapi_ip = tabby_api_IP | |
logging.debug(f"Article_Summarizer: Trying to summarize with tabbyapi") | |
tabby_model = llm_model | |
summary = summarize_with_tabbyapi(tabbyapi_key, tabbyapi_ip, json_file_path, tabby_model, | |
article_custom_prompt) | |
elif api_name.lower() == "vllm": | |
logging.debug(f"Article_Summarizer: Trying to summarize with VLLM") | |
summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path, | |
article_custom_prompt) | |
elif api_name.lower() == "huggingface": | |
huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', fallback=None) | |
logging.debug(f"Article_Summarizer: Trying to summarize with huggingface") | |
summary = summarize_with_huggingface(huggingface_api_key, json_file_path, article_custom_prompt) | |
except requests.exceptions.ConnectionError as e: | |
logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}") | |
if summary: | |
logging.info(f"Article_Summarizer: Summary generated using {api_name} API") | |
save_summary_to_file(summary, json_file_path) | |
else: | |
summary = "Summary not available" | |
logging.warning(f"Failed to generate summary using {api_name} API") | |
else: | |
summary = "Article Summarization: No API provided for summarization." | |
print(f"Summary: {summary}") # Debugging statement | |
# Step 3: Ingest the article into the database | |
ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, | |
article_custom_prompt) | |
return f"Title: {title}\nAuthor: {author}\nSummary: {summary}\nIngestion Result: {ingestion_result}" | |
def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title): | |
title = custom_article_title.strip() if custom_article_title else "Unstructured Text" | |
author = "Unknown" | |
ingestion_date = datetime.now().strftime('%Y-%m-%d') | |
# Summarize the unstructured text | |
if api_name: | |
json_file_path = f"Results/{title.replace(' ', '_')}_segments.json" | |
with open(json_file_path, 'w') as json_file: | |
json.dump([{'text': text}], json_file, indent=2) | |
if api_name.lower() == 'openai': | |
summary = summarize_with_openai(api_key, json_file_path, custom_prompt) | |
# Add other APIs as needed | |
else: | |
summary = "Unsupported API." | |
else: | |
summary = "No API provided for summarization." | |
# Ingest the unstructured text into the database | |
ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date, | |
custom_prompt) | |
return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}" | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Summarizers | |
# | |
# | |
# Fixme , function is replicated.... | |
def extract_text_from_segments(segments): | |
logging.debug(f"Main: extracting text from {segments}") | |
text = ' '.join([segment['text'] for segment in segments]) | |
logging.debug(f"Main: Successfully extracted text from {segments}") | |
return text | |
def summarize_with_openai(api_key, file_path, custom_prompt_arg): | |
try: | |
logging.debug("openai: Loading json data for summarization") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
open_ai_model = openai_model or 'gpt-4-turbo' | |
logging.debug("openai: Extracting text from the segments") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
logging.debug(f"openai: API Key is: {api_key}") | |
logging.debug("openai: Preparing data + prompt for submittal") | |
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
data = { | |
"model": open_ai_model, | |
"messages": [ | |
{ | |
"role": "system", | |
"content": "You are a professional summarizer." | |
}, | |
{ | |
"role": "user", | |
"content": openai_prompt | |
} | |
], | |
"max_tokens": 8192, # Adjust tokens as needed | |
"temperature": 0.1 | |
} | |
logging.debug("openai: Posting request") | |
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("openai: Summarization successful") | |
print("openai: Summarization successful.") | |
return summary | |
else: | |
logging.warning("openai: Summary not found in the response data") | |
return "openai: Summary not available" | |
else: | |
logging.debug("openai: Summarization failed") | |
print("openai: Failed to process summary:", response.text) | |
return "openai: Failed to process summary" | |
except Exception as e: | |
logging.debug("openai: Error in processing: %s", str(e)) | |
print("openai: Error occurred while processing summary with openai:", str(e)) | |
return "openai: Error occurred while processing summary" | |
def summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5): | |
try: | |
logging.debug("anthropic: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug("anthropic: Extracting text from the segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'x-api-key': api_key, | |
'anthropic-version': '2023-06-01', | |
'Content-Type': 'application/json' | |
} | |
anthropic_prompt = custom_prompt_arg # Sanitize the custom prompt | |
logging.debug(f"anthropic: Prompt is {anthropic_prompt}") | |
user_message = { | |
"role": "user", | |
"content": f"{text} \n\n\n\n{anthropic_prompt}" | |
} | |
data = { | |
"model": model, | |
"max_tokens": 4096, # max _possible_ tokens to return | |
"messages": [user_message], | |
"stop_sequences": ["\n\nHuman:"], | |
"temperature": 0.1, | |
"top_k": 0, | |
"top_p": 1.0, | |
"metadata": { | |
"user_id": "example_user_id", | |
}, | |
"stream": False, | |
"system": "You are a professional summarizer." | |
} | |
for attempt in range(max_retries): | |
try: | |
logging.debug("anthropic: Posting request to API") | |
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) | |
# Check if the status code indicates success | |
if response.status_code == 200: | |
logging.debug("anthropic: Post submittal successful") | |
response_data = response.json() | |
try: | |
summary = response_data['content'][0]['text'].strip() | |
logging.debug("anthropic: Summarization successful") | |
print("Summary processed successfully.") | |
return summary | |
except (IndexError, KeyError) as e: | |
logging.debug("anthropic: Unexpected data in response") | |
print("Unexpected response format from Claude API:", response.text) | |
return None | |
elif response.status_code == 500: # Handle internal server error specifically | |
logging.debug("anthropic: Internal server error") | |
print("Internal server error from API. Retrying may be necessary.") | |
time.sleep(retry_delay) | |
else: | |
logging.debug( | |
f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") | |
print(f"Failed to process summary, status code {response.status_code}: {response.text}") | |
return None | |
except RequestException as e: | |
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") | |
if attempt < max_retries - 1: | |
time.sleep(retry_delay) | |
else: | |
return f"anthropic: Network error: {str(e)}" | |
except FileNotFoundError as e: | |
logging.error(f"anthropic: File not found: {file_path}") | |
return f"anthropic: File not found: {file_path}" | |
except json.JSONDecodeError as e: | |
logging.error(f"anthropic: Invalid JSON format in file: {file_path}") | |
return f"anthropic: Invalid JSON format in file: {file_path}" | |
except Exception as e: | |
logging.error(f"anthropic: Error in processing: {str(e)}") | |
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" | |
# Summarize with Cohere | |
def summarize_with_cohere(api_key, file_path, model, custom_prompt_arg): | |
try: | |
logging.debug("cohere: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"cohere: Extracting text from segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
'Authorization': f'Bearer {api_key}' | |
} | |
cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
logging.debug("cohere: Prompt being sent is {cohere_prompt}") | |
data = { | |
"chat_history": [ | |
{"role": "USER", "message": cohere_prompt} | |
], | |
"message": "Please provide a summary.", | |
"model": model, | |
"connectors": [{"id": "web-search"}] | |
} | |
logging.debug("cohere: Submitting request to API endpoint") | |
print("cohere: Submitting request to API endpoint") | |
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'text' in response_data: | |
summary = response_data['text'].strip() | |
logging.debug("cohere: Summarization successful") | |
print("Summary processed successfully.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") | |
print(f"Failed to process summary, status code {response.status_code}: {response.text}") | |
return f"cohere: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("cohere: Error in processing: %s", str(e)) | |
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" | |
# https://console.groq.com/docs/quickstart | |
def summarize_with_groq(api_key, file_path, model, custom_prompt_arg): | |
try: | |
logging.debug("groq: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"groq: Extracting text from segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
logging.debug("groq: Prompt being sent is {groq_prompt}") | |
data = { | |
"messages": [ | |
{ | |
"role": "user", | |
"content": groq_prompt | |
} | |
], | |
"model": model | |
} | |
logging.debug("groq: Submitting request to API endpoint") | |
print("groq: Submitting request to API endpoint") | |
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("groq: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") | |
return f"groq: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("groq: Error in processing: %s", str(e)) | |
return f"groq: Error occurred while processing summary with groq: {str(e)}" | |
################################# | |
# | |
# Local Summarization | |
def summarize_with_local_llm(file_path, custom_prompt_arg): | |
try: | |
logging.debug("Local LLM: Loading json data for summarization") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug("Local LLM: Extracting text from the segments") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'Content-Type': 'application/json' | |
} | |
logging.debug("Local LLM: Preparing data + prompt for submittal") | |
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
data = { | |
"messages": [ | |
{ | |
"role": "system", | |
"content": "You are a professional summarizer." | |
}, | |
{ | |
"role": "user", | |
"content": local_llm_prompt | |
} | |
], | |
"max_tokens": 28000, # Adjust tokens as needed | |
} | |
logging.debug("Local LLM: Posting request") | |
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("Local LLM: Summarization successful") | |
print("Local LLM: Summarization successful.") | |
return summary | |
else: | |
logging.warning("Local LLM: Summary not found in the response data") | |
return "Local LLM: Summary not available" | |
else: | |
logging.debug("Local LLM: Summarization failed") | |
print("Local LLM: Failed to process summary:", response.text) | |
return "Local LLM: Failed to process summary" | |
except Exception as e: | |
logging.debug("Local LLM: Error in processing: %s", str(e)) | |
print("Error occurred while processing summary with Local LLM:", str(e)) | |
return "Local LLM: Error occurred while processing summary" | |
def summarize_with_llama(api_url, file_path, token, custom_prompt): | |
try: | |
logging.debug("llama: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"llama: Extracting text from segments file") | |
text = extract_text_from_segments(segments) # Define this function to extract text properly | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
if len(token) > 5: | |
headers['Authorization'] = f'Bearer {token}' | |
llama_prompt = f"{text} \n\n\n\n{custom_prompt}" | |
logging.debug("llama: Prompt being sent is {llama_prompt}") | |
data = { | |
"prompt": llama_prompt | |
} | |
logging.debug("llama: Submitting request to API endpoint") | |
print("llama: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
# if 'X' in response_data: | |
logging.debug(response_data) | |
summary = response_data['content'].strip() | |
logging.debug("llama: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") | |
return f"llama: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("llama: Error in processing: %s", str(e)) | |
return f"llama: Error occurred while processing summary with llama: {str(e)}" | |
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate | |
def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt): | |
try: | |
logging.debug("kobold: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"kobold: Extracting text from segments file") | |
text = extract_text_from_segments(segments) | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
kobold_prompt = f"{text} \n\n\n\n{custom_prompt}" | |
logging.debug("kobold: Prompt being sent is {kobold_prompt}") | |
# FIXME | |
# Values literally c/p from the api docs.... | |
data = { | |
"max_context_length": 8096, | |
"max_length": 4096, | |
"prompt": kobold_prompt, | |
} | |
logging.debug("kobold: Submitting request to API endpoint") | |
print("kobold: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("kobold: API Response Data: %s", response_data) | |
if response.status_code == 200: | |
if 'results' in response_data and len(response_data['results']) > 0: | |
summary = response_data['results'][0]['text'].strip() | |
logging.debug("kobold: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
else: | |
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") | |
return f"kobold: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("kobold: Error in processing: %s", str(e)) | |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}" | |
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API | |
def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt): | |
try: | |
logging.debug("ooba: Loading JSON data") | |
with open(file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug(f"ooba: Extracting text from segments file\n\n\n") | |
text = extract_text_from_segments(segments) | |
logging.debug(f"ooba: Finished extracting text from segments file") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It | |
# is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are | |
# my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable | |
ooba_prompt = "{text}\n\n\n\n{custom_prompt}" | |
logging.debug("ooba: Prompt being sent is {ooba_prompt}") | |
data = { | |
"mode": "chat", | |
"character": "Example", | |
"messages": [{"role": "user", "content": ooba_prompt}] | |
} | |
logging.debug("ooba: Submitting request to API endpoint") | |
print("ooba: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data, verify=False) | |
logging.debug("ooba: API Response Data: %s", response) | |
if response.status_code == 200: | |
response_data = response.json() | |
summary = response.json()['choices'][0]['message']['content'] | |
logging.debug("ooba: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") | |
return f"ooba: API request failed with status code {response.status_code}: {response.text}" | |
except Exception as e: | |
logging.error("ooba: Error in processing: %s", str(e)) | |
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" | |
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. | |
def summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg): | |
vllm_client = OpenAI( | |
base_url=vllm_api_url, | |
api_key=vllm_api_key_function_arg | |
) | |
custom_prompt = vllm_custom_prompt_function_arg | |
completion = client.chat.completions.create( | |
model=llm_model, | |
messages=[ | |
{"role": "system", "content": "You are a professional summarizer."}, | |
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} | |
] | |
) | |
vllm_summary = completion.choices[0].message.content | |
return vllm_summary | |
# FIXME - Install is more trouble than care to deal with right now. | |
def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt): | |
model = tabby_model | |
headers = { | |
'Authorization': f'Bearer {tabby_api_key}', | |
'Content-Type': 'application/json' | |
} | |
data = { | |
'text': text, | |
'model': 'tabby' # Specify the model if needed | |
} | |
try: | |
response = requests.post('https://api.tabbyapi.com/summarize', headers=headers, json=data) | |
response.raise_for_status() | |
summary = response.json().get('summary', '') | |
return summary | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error summarizing with TabbyAPI: {e}") | |
return "Error summarizing with TabbyAPI." | |
def save_summary_to_file(summary, file_path): | |
logging.debug("Now saving summary to file...") | |
summary_file_path = file_path.replace('.segments.json', '_summary.txt') | |
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
logging.info(f"Summary saved to file: {summary_file_path}") | |
summarizers: Dict[str, Callable[[str, str], str]] = { | |
'tabbyapi': summarize_with_tabbyapi, | |
'openai': summarize_with_openai, | |
'anthropic': summarize_with_claude, | |
'cohere': summarize_with_cohere, | |
'groq': summarize_with_groq, | |
'llama': summarize_with_llama, | |
'kobold': summarize_with_kobold, | |
'oobabooga': summarize_with_oobabooga | |
# Add more APIs here as needed | |
} | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Summarization with Detail | |
# | |
def summarize_with_detail_openai(text, detail, verbose=False): | |
summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True) | |
print(len(openai_tokenize(summary_with_detail_variable))) | |
return summary_with_detail_variable | |
def summarize_with_detail_recursive_openai(text, detail, verbose=False): | |
summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True) | |
print(summary_with_recursive_summarization) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Gradio UI | |
# | |
# Only to be used when configured with Gradio for HF Space | |
def summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt): | |
logging.debug(f"huggingface: Summarization process starting...") | |
client = InferenceClient() | |
#model = "microsoft/Phi-3-mini-128k-instruct" | |
model = "CohereForAI/c4ai-command-r-plus" | |
API_URL = f"https://api-inference.huggingface.co/models/{model}" | |
headers = {"Authorization": f"Bearer {huggingface_api_key}"} | |
client = InferenceClient(model=f"{model}", token=f"{huggingface_api_key}") | |
response = client.post(json={"inputs": "The goal of life is [MASK]."}, model="bert-base-uncased") | |
with open(json_file_path, 'r') as file: | |
segments = json.load(file) | |
text = ''.join([segment['text'] for segment in segments]) | |
hf_prompt = text + "\n\n\n\n" + custom_prompt | |
if huggingface_api_key == "": | |
api_key = os.getenv(HF_TOKEN) | |
logging.debug("HUGGINGFACE API KEY CHECK: " + huggingface_api_key) | |
try: | |
logging.debug("huggingface: Loading json data for summarization") | |
with open(json_file_path, 'r') as file: | |
segments = json.load(file) | |
logging.debug("huggingface: Extracting text from the segments") | |
text = ' '.join([segment['text'] for segment in segments]) | |
#api_key = os.getenv('HF_TOKEN').replace('"', '') | |
logging.debug("HUGGINGFACE API KEY CHECK #2: " + huggingface_api_key) | |
logging.debug("huggingface: Submitting request...") | |
response = client.text_generation(prompt=hf_prompt, max_new_tokens=4096) | |
if response is not None: | |
return response | |
#if response == FIXME: | |
#logging.debug("huggingface: Summarization successful") | |
#print("Summarization successful.") | |
#return response | |
#elif Bad Stuff: | |
# logging.debug(f"huggingface: Model is currently loading...{response.status_code}: {response.text}") | |
# global waiting_summary | |
# pretty_json = json.dumps(json.loads(response.text), indent=4) # Prettify JSON | |
# waiting_summary = f" {pretty_json} " # Use prettified JSON | |
# return waiting_summary | |
else: | |
logging.error(f"huggingface: Summarization failed with status code {response}") | |
return f"Failed to process summary, huggingface library error: {response}" | |
except Exception as e: | |
logging.error("huggingface: Error in processing: %s", str(e)) | |
print(f"Error occurred while processing summary with huggingface: {str(e)}") | |
return None | |
# FIXME | |
# This is here for gradio authentication | |
# Its just not setup. | |
# def same_auth(username, password): | |
# return username == password | |
def format_transcription(transcription_result): | |
if transcription_result: | |
json_data = transcription_result['transcription'] | |
return json.dumps(json_data, indent=2) | |
else: | |
return "" | |
def format_file_path(file_path, fallback_path=None): | |
if file_path and os.path.exists(file_path): | |
logging.debug(f"File exists: {file_path}") | |
return file_path | |
elif fallback_path and os.path.exists(fallback_path): | |
logging.debug(f"File does not exist: {file_path}. Returning fallback path: {fallback_path}") | |
return fallback_path | |
else: | |
logging.debug(f"File does not exist: {file_path}. No fallback path available.") | |
return None | |
def search_media(query, fields, keyword, page): | |
try: | |
results = search_and_display(query, fields, keyword, page) | |
return results | |
except Exception as e: | |
logger.error(f"Error searching media: {e}") | |
return str(e) | |
# FIXME - Change to use 'check_api()' function - also, create 'check_api()' function | |
def ask_question(transcription, question, api_name, api_key): | |
if not question.strip(): | |
return "Please enter a question." | |
prompt = f"""Transcription:\n{transcription} | |
Given the above transcription, please answer the following:\n\n{question}""" | |
# FIXME - Refactor main API checks so they're their own function - api_check() | |
# Call api_check() function here | |
if api_name.lower() == "openai": | |
openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) | |
headers = { | |
'Authorization': f'Bearer {openai_api_key}', | |
'Content-Type': 'application/json' | |
} | |
if openai_model: | |
pass | |
else: | |
openai_model = 'gpt-4-turbo' | |
data = { | |
"model": openai_model, | |
"messages": [ | |
{ | |
"role": "system", | |
"content": "You are a helpful assistant that answers questions based on the given " | |
"transcription and summary." | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
], | |
"max_tokens": 150000, | |
"temperature": 0.1 | |
} | |
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
answer = response.json()['choices'][0]['message']['content'].strip() | |
return answer | |
else: | |
return "Failed to process the question." | |
else: | |
return "Question answering is currently only supported with the OpenAI API." | |
import gradio as gr | |
def launch_ui(demo_mode=False): | |
whisper_models = ["small.en", "medium.en", "large"] | |
with gr.Blocks() as iface: | |
# Tab 1: Audio Transcription + Summarization | |
with gr.Tab("Audio Transcription + Summarization"): | |
with gr.Row(): | |
# Light/Dark mode toggle switch | |
theme_toggle = gr.Radio(choices=["Light", "Dark"], value="Light", | |
label="Light/Dark Mode Toggle (Toggle to change UI color scheme)") | |
# UI Mode toggle switch | |
ui_mode_toggle = gr.Radio(choices=["Simple", "Advanced"], value="Simple", | |
label="UI Mode (Toggle to show all options)") | |
# URL input is always visible | |
url_input = gr.Textbox(label="URL (Mandatory)", placeholder="Enter the video URL here") | |
# Inputs to be shown or hidden | |
num_speakers_input = gr.Number(value=2, label="Number of Speakers(Optional - Currently has no effect)", | |
visible=False) | |
whisper_model_input = gr.Dropdown(choices=whisper_models, value="small.en", | |
label="Whisper Model(This is the ML model used for transcription.)", | |
visible=False) | |
custom_prompt_input = gr.Textbox( | |
label="Custom Prompt (Customize your summarization, or ask a question about the video and have it " | |
"answered)", | |
placeholder="Above is the transcript of a video. Please read " | |
"through the transcript carefully. Identify the main topics that are discussed over the " | |
"course of the transcript. Then, summarize the key points about each main topic in a " | |
"concise bullet point. The bullet points should cover the key information conveyed about " | |
"each topic in the video, but should be much shorter than the full transcript. Please " | |
"output your bullet point summary inside <bulletpoints> tags.", | |
lines=3, visible=True) | |
offset_input = gr.Number(value=0, label="Offset (Seconds into the video to start transcribing at)", | |
visible=False) | |
api_name_input = gr.Dropdown( | |
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "Llama.cpp", "Kobold", "Ooba", "HuggingFace"], | |
value=None, | |
label="(Optional) The LLM endpoint to have summarize your request. If you're running a local model, select 'Local-LLM'", | |
visible=True) | |
api_key_input = gr.Textbox(label="API Key (Mandatory unless you're running a local model/server/no API selected)", | |
placeholder="Enter your API key here; Ignore if using Local API or Built-in API('Local-LLM')", | |
visible=True) | |
vad_filter_input = gr.Checkbox(label="VAD Filter (WIP)", value=False, | |
visible=False) | |
rolling_summarization_input = gr.Checkbox(label="Enable Rolling Summarization", value=False, | |
visible=False) | |
download_video_input = gr.components.Checkbox(label="Download Video(Select to allow for file download of " | |
"selected video)", value=False, visible=False) | |
download_audio_input = gr.components.Checkbox(label="Download Audio(Select to allow for file download of " | |
"selected Video's Audio)", value=False, visible=False) | |
detail_level_input = gr.Slider(minimum=0.01, maximum=1.0, value=0.01, step=0.01, interactive=True, | |
label="Summary Detail Level (Slide me) (Only OpenAI currently supported)", | |
visible=False) | |
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated Example: " | |
"tag_one,tag_two,tag_three)", | |
value="default,no_keyword_set", | |
visible=True) | |
question_box_input = gr.Textbox(label="Question", | |
placeholder="Enter a question to ask about the transcription", | |
visible=False) | |
chunk_summarization_input = gr.Checkbox(label="Time-based Chunk Summarization", | |
value=False, | |
visible=False) | |
chunk_duration_input = gr.Number(label="Chunk Duration (seconds)", value=DEFAULT_CHUNK_DURATION, | |
visible=False) | |
words_per_second_input = gr.Number(label="Words per Second", value=WORDS_PER_SECOND, | |
visible=False) | |
# time_based_summarization_input = gr.Checkbox(label="Enable Time-based Summarization", value=False, | |
# visible=False) time_chunk_duration_input = gr.Number(label="Time Chunk Duration (seconds)", value=60, | |
# visible=False) llm_model_input = gr.Dropdown(label="LLM Model", choices=["gpt-4o", "gpt-4-turbo", | |
# "claude-3-sonnet-20240229", "command-r-plus", "CohereForAI/c4ai-command-r-plus", "llama3-70b-8192"], | |
# value="gpt-4o", visible=False) | |
inputs = [ | |
num_speakers_input, whisper_model_input, custom_prompt_input, offset_input, api_name_input, | |
api_key_input, vad_filter_input, download_video_input, download_audio_input, | |
rolling_summarization_input, detail_level_input, question_box_input, keywords_input, | |
chunk_summarization_input, chunk_duration_input, words_per_second_input | |
] | |
# inputs_1 = [ | |
# url_input_1, | |
# num_speakers_input, whisper_model_input, custom_prompt_input_1, offset_input, api_name_input_1, | |
# api_key_input_1, vad_filter_input, download_video_input, download_audio_input, | |
# rolling_summarization_input, detail_level_input, question_box_input, keywords_input_1, | |
# chunk_summarization_input, chunk_duration_input, words_per_second_input, | |
# time_based_summarization_input, time_chunk_duration_input, llm_model_input | |
# ] | |
outputs = [ | |
gr.Textbox(label="Transcription (Resulting Transcription from your input URL)"), | |
gr.Textbox(label="Summary or Status Message (Current status of Summary or Summary itself)"), | |
gr.File(label="Download Transcription as JSON (Download the Transcription as a file)"), | |
gr.File(label="Download Summary as Text (Download the Summary as a file)"), | |
gr.File(label="Download Video (Download the Video as a file)", visible=False), | |
gr.File(label="Download Audio (Download the Audio as a file)", visible=False), | |
] | |
def toggle_light(mode): | |
if mode == "Dark": | |
return """ | |
<style> | |
body { | |
background-color: #1c1c1c; | |
color: #ffffff; | |
} | |
.gradio-container { | |
background-color: #1c1c1c; | |
color: #ffffff; | |
} | |
.gradio-button { | |
background-color: #4c4c4c; | |
color: #ffffff; | |
} | |
.gradio-input { | |
background-color: #4c4c4c; | |
color: #ffffff; | |
} | |
.gradio-dropdown { | |
background-color: #4c4c4c; | |
color: #ffffff; | |
} | |
.gradio-slider { | |
background-color: #4c4c4c; | |
} | |
.gradio-checkbox { | |
background-color: #4c4c4c; | |
} | |
.gradio-radio { | |
background-color: #4c4c4c; | |
} | |
.gradio-textbox { | |
background-color: #4c4c4c; | |
color: #ffffff; | |
} | |
.gradio-label { | |
color: #ffffff; | |
} | |
</style> | |
""" | |
else: | |
return """ | |
<style> | |
body { | |
background-color: #ffffff; | |
color: #000000; | |
} | |
.gradio-container { | |
background-color: #ffffff; | |
color: #000000; | |
} | |
.gradio-button { | |
background-color: #f0f0f0; | |
color: #000000; | |
} | |
.gradio-input { | |
background-color: #f0f0f0; | |
color: #000000; | |
} | |
.gradio-dropdown { | |
background-color: #f0f0f0; | |
color: #000000; | |
} | |
.gradio-slider { | |
background-color: #f0f0f0; | |
} | |
.gradio-checkbox { | |
background-color: #f0f0f0; | |
} | |
.gradio-radio { | |
background-color: #f0f0f0; | |
} | |
.gradio-textbox { | |
background-color: #f0f0f0; | |
color: #000000; | |
} | |
.gradio-label { | |
color: #000000; | |
} | |
</style> | |
""" | |
# Set the event listener for the Light/Dark mode toggle switch | |
theme_toggle.change(fn=toggle_light, inputs=theme_toggle, outputs=gr.HTML()) | |
# Function to toggle visibility of advanced inputs | |
def toggle_ui(mode): | |
visible = (mode == "Advanced") | |
return [ | |
gr.update(visible=True) if i in [0, 3, 5, 6, 13] else gr.update(visible=visible) | |
for i in range(len(inputs)) | |
] | |
# Set the event listener for the UI Mode toggle switch | |
ui_mode_toggle.change(fn=toggle_ui, inputs=ui_mode_toggle, outputs=inputs) | |
# Combine URL input and inputs lists | |
all_inputs = [url_input] + inputs | |
gr.Interface( | |
fn=process_url, | |
inputs=all_inputs, | |
outputs=outputs, | |
title="Video Transcription and Summarization", | |
description="Submit a video URL for transcription and summarization. Ensure you input all necessary " | |
"information including API keys." | |
) | |
# Tab 2: Scrape & Summarize Articles/Websites | |
with gr.Tab("Scrape & Summarize Articles/Websites"): | |
url_input = gr.Textbox(label="Article URL", placeholder="Enter the article URL here") | |
custom_article_title_input = gr.Textbox(label="Custom Article Title (Optional)", | |
placeholder="Enter a custom title for the article") | |
custom_prompt_input = gr.Textbox( | |
label="Custom Prompt (Optional)", | |
placeholder="Provide a custom prompt for summarization", | |
lines=3 | |
) | |
api_name_input = gr.Dropdown( | |
choices=[None, "huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], | |
value=None, | |
label="API Name (Mandatory for Summarization)" | |
) | |
api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)", | |
placeholder="Enter your API key here; Ignore if using Local API or Built-in API") | |
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)", | |
value="default,no_keyword_set", visible=True) | |
scrape_button = gr.Button("Scrape and Summarize") | |
result_output = gr.Textbox(label="Result") | |
scrape_button.click(scrape_and_summarize, inputs=[url_input, custom_prompt_input, api_name_input, | |
api_key_input, keywords_input, | |
custom_article_title_input], outputs=result_output) | |
gr.Markdown("### Or Paste Unstructured Text Below (Will use settings from above)") | |
text_input = gr.Textbox(label="Unstructured Text", placeholder="Paste unstructured text here", lines=10) | |
text_ingest_button = gr.Button("Ingest Unstructured Text") | |
text_ingest_result = gr.Textbox(label="Result") | |
text_ingest_button.click(ingest_unstructured_text, | |
inputs=[text_input, custom_prompt_input, api_name_input, api_key_input, | |
keywords_input, custom_article_title_input], outputs=text_ingest_result) | |
with gr.Tab("Ingest & Summarize Documents"): | |
gr.Markdown("Plan to put ingestion form for documents here") | |
gr.Markdown("Will ingest documents and store into SQLite DB") | |
gr.Markdown("RAG here we come....:/") | |
with gr.Tab("Sample Prompts/Questions"): | |
gr.Markdown("Plan to put Sample prompts/questions here") | |
gr.Markdown("Fabric prompts/live UI?") | |
# Searchable list | |
with gr.Row(): | |
search_box = gr.Textbox(label="Search prompts", placeholder="Type to filter prompts") | |
search_result = gr.Textbox(label="Matching prompts", interactive=False) | |
search_box.change(search_prompts, inputs=search_box, outputs=search_result) | |
# Interactive list | |
with gr.Row(): | |
prompt_selector = gr.Radio(choices=all_prompts, label="Select a prompt") | |
selected_output = gr.Textbox(label="Selected prompt") | |
prompt_selector.change(handle_prompt_selection, inputs=prompt_selector, outputs=selected_output) | |
# Categorized display | |
with gr.Accordion("Category 1"): | |
gr.Markdown("\n".join(prompts_category_1)) | |
with gr.Accordion("Category 2"): | |
gr.Markdown("\n".join(prompts_category_2)) | |
# Gradio interface setup with tabs | |
search_tab = gr.Interface( | |
fn=search_and_display, | |
inputs=[ | |
gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), | |
gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content", "URL", "Type", "Author"], | |
value=["Title"]), | |
gr.Textbox(label="Keyword", placeholder="Enter keywords here..."), | |
gr.Number(label="Page", value=1, precision=0), | |
gr.Checkbox(visible=False) # Dummy input to match the expected number of arguments | |
], | |
outputs=[ | |
gr.Dataframe(label="Search Results"), | |
gr.Textbox(label="Message", visible=False) | |
], | |
title="Search Media Summaries", | |
description="Search for media (documents, videos, articles) and their summaries in the database. Use keywords for better filtering.", | |
allow_flagging="never" | |
) | |
export_tab = gr.Interface( | |
fn=export_to_csv, | |
inputs=[ | |
gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), | |
gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]), | |
gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )", | |
placeholder="Enter keywords here..."), | |
gr.Number(label="Page", value=1, precision=0), | |
gr.Number(label="Results per File", value=1000, precision=0) | |
], | |
outputs="text", | |
title="Export Search Results to CSV", | |
description="Export the search results to a CSV file." | |
) | |
keyword_add_interface = gr.Interface( | |
fn=add_keyword, | |
inputs=gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here..."), | |
outputs="text", | |
title="Add Keywords", | |
description="Add one, or multiple keywords to the database.", | |
allow_flagging="never" | |
) | |
keyword_delete_interface = gr.Interface( | |
fn=delete_keyword, | |
inputs=gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here..."), | |
outputs="text", | |
title="Delete Keyword", | |
description="Delete a keyword from the database.", | |
allow_flagging="never" | |
) | |
keyword_tab = gr.TabbedInterface( | |
[keyword_add_interface, keyword_delete_interface], | |
["Add Keywords", "Delete Keywords"] | |
) | |
# Combine interfaces into a tabbed interface | |
tabbed_interface = gr.TabbedInterface([iface, search_tab, export_tab, keyword_tab], | |
["Transcription + Summarization", "Search", "Export", "Keywords"]) | |
# Launch the interface | |
server_port_variable = 7860 | |
if server_mode: | |
tabbed_interface.launch(share=True, server_port=server_port_variable, server_name="http://0.0.0.0") | |
elif share_public: | |
tabbed_interface.launch(share=True,) | |
else: | |
tabbed_interface.launch(share=False,) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Prompt Sample Box | |
# | |
# Sample data | |
prompts_category_1 = [ | |
"What are the key points discussed in the video?", | |
"Summarize the main arguments made by the speaker.", | |
"Describe the conclusions of the study presented." | |
] | |
prompts_category_2 = [ | |
"How does the proposed solution address the problem?", | |
"What are the implications of the findings?", | |
"Can you explain the theory behind the observed phenomenon?" | |
] | |
all_prompts = prompts_category_1 + prompts_category_2 | |
# Search function | |
def search_prompts(query): | |
filtered_prompts = [prompt for prompt in all_prompts if query.lower() in prompt.lower()] | |
return "\n".join(filtered_prompts) | |
# Handle prompt selection | |
def handle_prompt_selection(prompt): | |
return f"You selected: {prompt}" | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Local LLM Setup / Running | |
# | |
# Download latest llamafile from Github | |
# Example usage | |
#repo = "Mozilla-Ocho/llamafile" | |
#asset_name_prefix = "llamafile-" | |
#output_filename = "llamafile" | |
#download_latest_llamafile(repo, asset_name_prefix, output_filename) | |
def download_latest_llamafile(repo, asset_name_prefix, output_filename): | |
# Globals | |
global local_llm_model, llamafile | |
# Check if the file already exists | |
print("Checking for and downloading Llamafile it it doesn't already exist...") | |
if os.path.exists(output_filename): | |
time.sleep(1) | |
print("Llamafile already exists. Skipping download.") | |
logging.debug(f"{output_filename} already exists. Skipping download.") | |
time.sleep(1) | |
llamafile = output_filename | |
llamafile_exists = True | |
else: | |
llamafile_exists = False | |
if llamafile_exists == True: | |
pass | |
else: | |
# Get the latest release information | |
latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" | |
response = requests.get(latest_release_url) | |
if response.status_code != 200: | |
raise Exception(f"Failed to fetch latest release info: {response.status_code}") | |
latest_release_data = response.json() | |
tag_name = latest_release_data['tag_name'] | |
# Get the release details using the tag name | |
release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" | |
response = requests.get(release_details_url) | |
if response.status_code != 200: | |
raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") | |
release_data = response.json() | |
assets = release_data.get('assets', []) | |
# Find the asset with the specified prefix | |
asset_url = None | |
for asset in assets: | |
if re.match(f"{asset_name_prefix}.*", asset['name']): | |
asset_url = asset['browser_download_url'] | |
break | |
if not asset_url: | |
raise Exception(f"No asset found with prefix {asset_name_prefix}") | |
# Download the asset | |
response = requests.get(asset_url) | |
if response.status_code != 200: | |
raise Exception(f"Failed to download asset: {response.status_code}") | |
print("Llamafile downloaded successfully.") | |
logging.debug("Main: Llamafile downloaded successfully.") | |
# Save the file | |
with open(output_filename, 'wb') as file: | |
file.write(response.content) | |
logging.debug(f"Downloaded {output_filename} from {asset_url}") | |
print(f"Downloaded {output_filename} from {asset_url}") | |
# Check to see if the LLM already exists, and if not, download the LLM | |
print("Checking for and downloading LLM from Huggingface if needed...") | |
logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") | |
mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" | |
Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" | |
Phi_3_mini_4k_instruct_Q8_0_llamafile = "Phi-3-mini-4k-instruct.Q8_0.llamafile" | |
meta_Llama_3_8B_Instruct_Q8_0_llamafile = 'Meta-Llama-3-8B-Instruct.Q8_0.llamafile' | |
available_models = [] | |
# Check for existence of model files | |
if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): | |
available_models.append(mistral_7b_instruct_v0_2_q8_0_llamafile) | |
print("Mistral-7B-Instruct-v0.2.Q8_0.llamafile already exists. Skipping download.") | |
if os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): | |
available_models.append(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8) | |
print("Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8_0.gguf already exists. Skipping download.") | |
if os.path.exists(Phi_3_mini_4k_instruct_Q8_0_llamafile): | |
available_models.append(Phi_3_mini_4k_instruct_Q8_0_llamafile) | |
print("Phi-3-mini-4k-instruct-Q8_0.llamafile already exists. Skipping download.") | |
if os.path.exists(meta_Llama_3_8B_Instruct_Q8_0_llamafile): | |
available_models.append(meta_Llama_3_8B_Instruct_Q8_0_llamafile) | |
print("Meta-Llama-3-8B-Instruct.Q8_0.llamafile already exists. Skipping download.") | |
# If no models are available, download the models | |
if not available_models: | |
user_choice_main = input("Would you like to download an LLM model? (Y/N): ") | |
elif available_models: | |
user_choice_main = input("\nSeems you already have a model available, would you like to download another LLM model? (Y/N): ") | |
if user_choice_main.lower() == "y": | |
logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") | |
time.sleep(1) | |
dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") | |
if dl_check.lower == "n" or "2": | |
exit() | |
else: | |
llm_choice = input("\nWhich LLM model would you like to download?\n\n1. Mistral-7B-Instruct-v0.2-GGUF \n2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) \n3. Microsoft Phi3-Mini-128k 3.8B): \n\nPress '1', '2', or '3' to specify:\n\n ") | |
while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": | |
print("Invalid choice. Please try again.") | |
if llm_choice == "1": | |
print("Downloading the Mistral-7B-Instruct-v0.2 LLM from Huggingface...") | |
print("Gonna be a bit...") | |
print("Like seriously, an 8GB file...(don't say I didn't warn you...)") | |
time.sleep(2) | |
mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" | |
llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 | |
llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" | |
llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" | |
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) | |
local_llm_model = "mistral-7b-instruct-v0.2.Q8_0.llamafile" | |
elif llm_choice == "2": | |
print("Downloading the samantha-mistra-instruct-7b-bulleted-notes LLM from Huggingface...") | |
print("Gonna be a bit...") | |
print("Like seriously, an 8GB file...(don't say I didn't warn you...)") | |
time.sleep(2) | |
samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" | |
llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 | |
llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" | |
llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" | |
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) | |
local_llm_model = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" | |
elif llm_choice == "3": | |
print("Downloading MS Phi-3-4k-3.8B LLM from Huggingface...") | |
print("Gonna be a bit...") | |
print("Like seriously, a 4GB file...(don't say I didn't warn you...)") | |
time.sleep(2) | |
Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 = "1b51fc72fda221dd7b4d3e84603db37fbb1ce53c17f2e7583b7026d181b8d20f" | |
llm_download_model_hash = Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 | |
llamafile_llm_output_filename = "Phi-3-mini-4k-instruct.Q8_0.llamafile" | |
llamafile_llm_url = "https://huggingface.co/Mozilla/Phi-3-mini-4k-instruct-llamafile/resolve/main/Phi-3-mini-4k-instruct.Q8_0.llamafile?download=true" | |
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) | |
local_llm_model = "Phi-3-mini-4k-instruct-Q8_0.llamafile" | |
elif llm_choice == "4": | |
print("Downloading the Llama-3-8B LLM from Huggingface...") | |
print("Gonna be a bit...") | |
print("Like seriously, a 8GB file...(don't say I didn't warn you...)") | |
time.sleep(2) | |
meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" | |
llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 | |
llamafile_llm_output_filename = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile" | |
llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" | |
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) | |
local_llm_model = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile" | |
else: | |
print("Invalid choice. Please try again.") | |
else: | |
pass | |
if available_models: | |
print("\n\nAvailable models:") | |
for idx, model in enumerate(available_models, start=1): | |
print(f"{idx}. {model}") | |
user_choice = input("\nWhich model would you like to use? Please enter the corresponding number: ") | |
while not user_choice.isdigit() or int(user_choice) not in range(1, len(available_models) + 1): | |
print("Invalid choice. Please try again.") | |
user_choice = input("Which model would you like to use? Please enter the corresponding number: ") | |
user_answer = available_models[int(user_choice) - 1] | |
local_llm_model = user_answer | |
print(f"You have chosen to use: {user_answer}") | |
else: | |
print("No models available/Found.") | |
print("Please run the script again and select a model, or download one. Exiting...") | |
exit() | |
return llamafile, user_answer | |
def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5): | |
temp_path = dest_path + '.tmp' | |
for attempt in range(max_retries): | |
try: | |
# Check if a partial download exists and get its size | |
resume_header = {} | |
if os.path.exists(temp_path): | |
resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'} | |
response = requests.get(url, stream=True, headers=resume_header) | |
response.raise_for_status() | |
# Get the total file size from headers | |
total_size = int(response.headers.get('content-length', 0)) | |
initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0 | |
mode = 'ab' if 'Range' in response.headers else 'wb' | |
with open(temp_path, mode) as temp_file, tqdm( | |
total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True | |
) as pbar: | |
for chunk in response.iter_content(chunk_size=8192): | |
if chunk: # filter out keep-alive new chunks | |
temp_file.write(chunk) | |
pbar.update(len(chunk)) | |
# Verify the checksum if provided | |
if expected_checksum: | |
if not verify_checksum(temp_path, expected_checksum): | |
os.remove(temp_path) | |
raise ValueError("Downloaded file's checksum does not match the expected checksum") | |
# Move the file to the final destination | |
os.rename(temp_path, dest_path) | |
print("Download complete and verified!") | |
return dest_path | |
except Exception as e: | |
print(f"Attempt {attempt + 1} failed: {e}") | |
if attempt < max_retries - 1: | |
print(f"Retrying in {delay} seconds...") | |
time.sleep(delay) | |
else: | |
print("Max retries reached. Download failed.") | |
raise | |
def verify_checksum(file_path, expected_checksum): | |
sha256_hash = hashlib.sha256() | |
with open(file_path, 'rb') as f: | |
for byte_block in iter(lambda: f.read(4096), b''): | |
sha256_hash.update(byte_block) | |
return sha256_hash.hexdigest() == expected_checksum | |
# FIXME - Doesn't work... | |
# Function to close out llamafile process on script exit. | |
def cleanup_process(): | |
global process | |
if process is not None: | |
process.terminate() | |
process = None | |
print("Terminated the external process") | |
def signal_handler(sig, frame): | |
logging.info('Signal handler called with signal: %s', sig) | |
cleanup_process() | |
sys.exit(0) | |
# Function to launch the llamafile in an external terminal window | |
# local_llm_model = Whatever the local model is | |
def local_llm_function(): | |
repo = "Mozilla-Ocho/llamafile" | |
asset_name_prefix = "llamafile-" | |
useros = os.name | |
if useros == "nt": | |
output_filename = "llamafile.exe" | |
else: | |
output_filename = "llamafile" | |
print( | |
"WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") | |
print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") | |
print("WARNING - Hope you're comfy. Or it's already downloaded.") | |
time.sleep(6) | |
logging.debug("Main: Checking and downloading Llamafile from Github if needed...") | |
llamafile, user_answer = download_latest_llamafile(repo, asset_name_prefix, output_filename) | |
logging.debug("Main: Llamafile downloaded successfully.") | |
# Launch the llamafile in an external process with the specified argument | |
arguments = ["-m", user_answer] | |
try: | |
logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") | |
if useros == "nt": | |
launch_in_new_terminal_windows(llamafile, arguments) | |
elif useros == "posix": | |
launch_in_new_terminal_linux(llamafile, arguments) | |
else: | |
launch_in_new_terminal_mac(llamafile, arguments) | |
# FIXME - pid doesn't exist in this context | |
#logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") | |
atexit.register(cleanup_process) | |
except Exception as e: | |
logging.error(f"Failed to launch the process: {e}") | |
print(f"Failed to launch the process: {e}") | |
def launch_in_new_terminal_windows(executable, args): | |
command = f'start cmd /k "{executable} {" ".join(args)}"' | |
process = subprocess.run(command, shell=True) | |
# FIXME | |
def launch_in_new_terminal_linux(executable, args): | |
command = f'gnome-terminal -- {executable} {" ".join(args)}' | |
process = subprocess.run(command, shell=True) | |
# FIXME | |
def launch_in_new_terminal_mac(executable, args): | |
command = f'open -a Terminal.app {executable} {" ".join(args)}' | |
process = subprocess.run(command, shell=True) | |
# | |
# | |
####################################################################################################################### | |
####################################################################################################################### | |
# Main() | |
# | |
def main(input_path, api_name=None, api_key=None, | |
num_speakers=2, | |
whisper_model="small.en", | |
offset=0, | |
vad_filter=False, | |
download_video_flag=False, | |
custom_prompt=None, | |
overwrite=False, | |
rolling_summarization=False, | |
detail=0.01, | |
keywords=None, | |
chunk_summarization=False, | |
chunk_duration=None, | |
words_per_second=None, | |
llm_model=None, | |
time_based=False): | |
global detail_level_number, summary, audio_file, detail_level, summary | |
detail_level = detail | |
print(f"Keywords: {keywords}") | |
if input_path is None and args.user_interface: | |
return [] | |
start_time = time.monotonic() | |
paths = [] # Initialize paths as an empty list | |
if os.path.isfile(input_path) and input_path.endswith('.txt'): | |
logging.debug("MAIN: User passed in a text file, processing text file...") | |
paths = read_paths_from_file(input_path) | |
elif os.path.exists(input_path): | |
logging.debug("MAIN: Local file path detected") | |
paths = [input_path] | |
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict: | |
logging.debug("MAIN: YouTube playlist detected") | |
print( | |
"\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a " | |
"text file that you can then pass into this script though! (It may not work... playlist support seems " | |
"spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython | |
diarizer.py <playlist text file name>\n\n""") | |
return | |
else: | |
paths = [input_path] | |
results = [] | |
for path in paths: | |
try: | |
if path.startswith('http'): | |
logging.debug("MAIN: URL Detected") | |
info_dict = get_youtube(path) | |
json_file_path = None | |
if info_dict: | |
logging.debug("MAIN: Creating path for video file...") | |
download_path = create_download_directory(info_dict['title']) | |
logging.debug("MAIN: Path created successfully\n MAIN: Now Downloading video from yt_dlp...") | |
try: | |
video_path = download_video(path, download_path, info_dict, download_video_flag) | |
except RuntimeError as e: | |
logging.error(f"Error downloading video: {str(e)}") | |
# FIXME - figure something out for handling this situation.... | |
continue | |
logging.debug("MAIN: Video downloaded successfully") | |
logging.debug("MAIN: Converting video file to WAV...") | |
audio_file = convert_to_wav(video_path, offset) | |
logging.debug("MAIN: Audio file converted successfully") | |
else: | |
if os.path.exists(path): | |
logging.debug("MAIN: Local file path detected") | |
download_path, info_dict, audio_file = process_local_file(path) | |
else: | |
logging.error(f"File does not exist: {path}") | |
continue | |
if info_dict: | |
logging.debug("MAIN: Creating transcription file from WAV") | |
segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter) | |
transcription_result = { | |
'video_path': path, | |
'audio_file': audio_file, | |
'transcription': segments | |
} | |
results.append(transcription_result) | |
logging.info(f"MAIN: Transcription complete: {audio_file}") | |
# Perform rolling summarization based on API Name, detail level, and if an API key exists | |
# Will remove the API key once rolling is added for llama.cpp | |
# FIXME - Add input for model name for tabby and vllm | |
if rolling_summarization: | |
logging.info("MAIN: Rolling Summarization") | |
# Extract the text from the segments | |
text = extract_text_from_segments(segments) | |
# Set the json_file_path | |
json_file_path = audio_file.replace('.wav', '.segments.json') | |
# Perform rolling summarization | |
summary = summarize_with_detail_openai(text, detail=detail_level, verbose=False) | |
# Handle the summarized output | |
if summary: | |
transcription_result['summary'] = summary | |
logging.info("MAIN: Rolling Summarization successful.") | |
save_summary_to_file(summary, json_file_path) | |
else: | |
logging.warning("MAIN: Rolling Summarization failed.") | |
# FIXME - fucking mess of a function. | |
# # Time-based Summarization | |
# elif args.time_based: | |
# logging.info("MAIN: Time-based Summarization") | |
# global time_based_value | |
# time_based_value = args.time_based | |
# # Set the json_file_path | |
# json_file_path = audio_file.replace('.wav', '.segments.json') | |
# | |
# # Perform time-based summarization | |
# summary = time_chunk_summarize(api_name, api_key, segments, args.time_based, custom_prompt, | |
# llm_model) | |
# | |
# # Handle the summarized output | |
# if summary: | |
# transcription_result['summary'] = summary | |
# logging.info("MAIN: Time-based Summarization successful.") | |
# save_summary_to_file(summary, json_file_path) | |
# else: | |
# logging.warning("MAIN: Time-based Summarization failed.") | |
# Perform chunk summarization - FIXME | |
elif chunk_summarization: | |
logging.info("MAIN: Chunk Summarization") | |
# Set the json_file_path | |
json_file_path = audio_file.replace('.wav', '.segments.json') | |
# Perform chunk summarization | |
summary = summarize_chunks(api_name, api_key, segments, chunk_duration, words_per_second) | |
# Handle the summarized output | |
if summary: | |
transcription_result['summary'] = summary | |
logging.info("MAIN: Chunk Summarization successful.") | |
save_summary_to_file(summary, json_file_path) | |
else: | |
logging.warning("MAIN: Chunk Summarization failed.") | |
# Perform summarization based on the specified API | |
elif api_name: | |
logging.debug(f"MAIN: Summarization being performed by {api_name}") | |
json_file_path = audio_file.replace('.wav', '.segments.json') | |
if api_name.lower() == 'openai': | |
openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', | |
fallback=None) | |
try: | |
logging.debug(f"MAIN: trying to summarize with openAI") | |
summary = summarize_with_openai(openai_api_key, json_file_path, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "anthropic": | |
anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', | |
fallback=None) | |
try: | |
logging.debug(f"MAIN: Trying to summarize with anthropic") | |
summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model, | |
custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "cohere": | |
cohere_api_key = os.getenv('COHERE_TOKEN').replace('"', '') if api_key is None else api_key | |
try: | |
logging.debug(f"MAIN: Trying to summarize with cohere") | |
summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "groq": | |
groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None) | |
try: | |
logging.debug(f"MAIN: Trying to summarize with Groq") | |
summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "llama": | |
llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) | |
llama_ip = llama_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with Llama.cpp") | |
summary = summarize_with_llama(llama_ip, json_file_path, llama_token, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "kobold": | |
kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None) | |
kobold_ip = kobold_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with kobold.cpp") | |
summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "ooba": | |
ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None) | |
ooba_ip = ooba_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with oobabooga") | |
summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "tabbyapi": | |
tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None) | |
tabbyapi_ip = tabby_api_IP | |
try: | |
logging.debug(f"MAIN: Trying to summarize with tabbyapi") | |
tabby_model = llm_model | |
summary = summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, json_file_path, tabby_model, | |
custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
elif api_name.lower() == "vllm": | |
logging.debug(f"MAIN: Trying to summarize with VLLM") | |
summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path, | |
custom_prompt) | |
elif api_name.lower() == "local-llm": | |
logging.debug(f"MAIN: Trying to summarize with the local LLM, Mistral Instruct v0.2") | |
local_llm_url = "http://127.0.0.1:8080" | |
summary = summarize_with_local_llm(json_file_path, custom_prompt) | |
elif api_name.lower() == "huggingface": | |
huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', | |
fallback=None) | |
try: | |
logging.debug(f"MAIN: Trying to summarize with huggingface") | |
summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt) | |
except requests.exceptions.ConnectionError: | |
requests.status_code = "Connection: " | |
else: | |
logging.warning(f"Unsupported API: {api_name}") | |
summary = None | |
if summary: | |
transcription_result['summary'] = summary | |
logging.info(f"Summary generated using {api_name} API") | |
save_summary_to_file(summary, json_file_path) | |
elif final_summary: | |
logging.info(f"Rolling summary generated using {api_name} API") | |
logging.info(f"Final Rolling summary is {final_summary}\n\n") | |
save_summary_to_file(final_summary, json_file_path) | |
else: | |
logging.warning(f"Failed to generate summary using {api_name} API") | |
else: | |
logging.info("MAIN: #2 - No API specified. Summarization will not be performed") | |
# Add media to the database | |
add_media_with_keywords( | |
url=path, | |
title=info_dict.get('title', 'Untitled'), | |
media_type='video', | |
content=' '.join([segment['text'] for segment in segments]), | |
keywords=','.join(keywords), | |
prompt=custom_prompt or 'No prompt provided', | |
summary=summary or 'No summary provided', | |
transcription_model=whisper_model, | |
author=info_dict.get('uploader', 'Unknown'), | |
ingestion_date=datetime.now().strftime('%Y-%m-%d') | |
) | |
except Exception as e: | |
logging.error(f"Error processing {path}: {str(e)}") | |
continue | |
except Exception as e: | |
logging.error(f"Error processing path: {path}") | |
logging.error(str(e)) | |
continue | |
# end_time = time.monotonic() | |
# print("Total program execution time: " + timedelta(seconds=end_time - start_time)) | |
return results | |
def signal_handler(signal, frame): | |
logging.info('Signal received, exiting...') | |
sys.exit(0) | |
############################## MAIN ############################## | |
# | |
# | |
if __name__ == "__main__": | |
# Register signal handlers | |
signal.signal(signal.SIGINT, signal_handler) | |
signal.signal(signal.SIGTERM, signal_handler) | |
# Establish logging baseline | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
parser = argparse.ArgumentParser( | |
description='Transcribe and summarize videos.', | |
epilog=''' | |
Sample commands: | |
1. Simple Sample command structure: | |
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three | |
2. Rolling Summary Sample command structure: | |
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three | |
3. FULL Sample command structure: | |
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three | |
4. Sample command structure for UI: | |
summarize.py -gui -log DEBUG | |
''', | |
formatter_class=argparse.RawTextHelpFormatter | |
) | |
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') | |
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio') | |
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') | |
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') | |
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') | |
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', | |
help='Whisper model (default: small.en)') | |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') | |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') | |
parser.add_argument('-log', '--log_level', type=str, default='INFO', | |
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') | |
parser.add_argument('-gui', '--user_interface', action='store_true', help="Launch the Gradio user interface") | |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') | |
parser.add_argument('-prompt', '--custom_prompt', type=str, | |
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just ' | |
'modify the script itself...)') | |
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files') | |
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization') | |
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, ' | |
'defines the chunk size.\n Default is 0.01(lots ' | |
'of chunks) -> 1.00 (few chunks)\n Currently ' | |
'only OpenAI works. ', | |
default=0.01, ) | |
# FIXME - This or time based... | |
parser.add_argument('--chunk_duration', type=int, default=DEFAULT_CHUNK_DURATION, | |
help='Duration of each chunk in seconds') | |
# FIXME - This or chunk_duration.... -> Maybe both??? | |
parser.add_argument('-time', '--time_based', type=int, | |
help='Enable time-based summarization and specify the chunk duration in seconds (minimum 60 seconds, increments of 30 seconds)') | |
parser.add_argument('-model', '--llm_model', type=str, default='', | |
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)') | |
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'], | |
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)') | |
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)') | |
parser.add_argument('--local_llm', action='store_true', help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") | |
parser.add_argument('--server_mode', action='store_true', help='Run in server mode (This exposes the GUI/Server to the network)') | |
parser.add_argument('--share_public', type=int, default=7860, help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") | |
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on') | |
# parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file') | |
args = parser.parse_args() | |
share_public = args.share_public | |
server_mode = args.server_mode | |
server_port = args.port | |
########## Logging setup | |
logger = logging.getLogger() | |
logger.setLevel(getattr(logging, args.log_level)) | |
# Create console handler | |
console_handler = logging.StreamHandler() | |
console_handler.setLevel(getattr(logging, args.log_level)) | |
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
console_handler.setFormatter(console_formatter) | |
logger.addHandler(console_handler) | |
if args.log_file: | |
# Create file handler | |
file_handler = logging.FileHandler(args.log_file) | |
file_handler.setLevel(getattr(logging, args.log_level)) | |
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
file_handler.setFormatter(file_formatter) | |
logger.addHandler(file_handler) | |
logger.info(f"Log file created at: {args.log_file}") | |
########## Custom Prompt setup | |
custom_prompt = args.custom_prompt | |
if custom_prompt is None or custom_prompt == "": | |
logging.debug("No custom prompt defined, will use default") | |
args.custom_prompt = ("\n\nabove is the transcript of a video " | |
"Please read through the transcript carefully. Identify the main topics that are " | |
"discussed over the course of the transcript. Then, summarize the key points about each " | |
"main topic in a concise bullet point. The bullet points should cover the key " | |
"information conveyed about each topic in the video, but should be much shorter than " | |
"the full transcript. Please output your bullet point summary inside <bulletpoints> " | |
"tags.") | |
custom_prompt = args.custom_prompt | |
print("No custom prompt defined, will use default") | |
else: | |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt") | |
print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}") | |
# Check if the user wants to use the local LLM from the script | |
local_llm = args.local_llm | |
logging.info(f'Local LLM flag: {local_llm}') | |
if args.user_interface: | |
# if local_llm: | |
# local_llm_function() | |
# time.sleep(3) | |
# webbrowser.open_new_tab('http://127.0.0.1:7860') | |
launch_ui(demo_mode=False) | |
else: | |
if not args.input_path: | |
parser.print_help() | |
sys.exit(1) | |
logging.info('Starting the transcription and summarization process.') | |
logging.info(f'Input path: {args.input_path}') | |
logging.info(f'API Name: {args.api_name}') | |
logging.info(f'Number of speakers: {args.num_speakers}') | |
logging.info(f'Whisper model: {args.whisper_model}') | |
logging.info(f'Offset: {args.offset}') | |
logging.info(f'VAD filter: {args.vad_filter}') | |
logging.info(f'Log Level: {args.log_level}') | |
logging.info(f'Demo Mode: {args.demo_mode}') | |
logging.info(f'Custom Prompt: {args.custom_prompt}') | |
logging.info(f'Overwrite: {args.overwrite}') | |
logging.info(f'Rolling Summarization: {args.rolling_summarization}') | |
logging.info(f'User Interface: {args.user_interface}') | |
logging.info(f'Video Download: {args.video}') | |
# logging.info(f'Save File location: {args.output_path}') | |
# logging.info(f'Log File location: {args.log_file}') | |
# Get all API keys from the config | |
api_keys = {key: value for key, value in config.items('API') if key.endswith('_api_key')} | |
api_name = args.api_name | |
# Rolling Summarization will only be performed if an API is specified and the API key is available | |
# and the rolling summarization flag is set | |
# | |
summary = None # Initialize to ensure it's always defined | |
if args.detail_level == None: | |
args.detail_level = 0.01 | |
if args.api_name and args.rolling_summarization and any( | |
key.startswith(args.api_name) and value is not None for key, value in api_keys.items()): | |
logging.info(f'MAIN: API used: {args.api_name}') | |
logging.info('MAIN: Rolling Summarization will be performed.') | |
elif args.api_name: | |
logging.info(f'MAIN: API used: {args.api_name}') | |
logging.info('MAIN: Summarization (not rolling) will be performed.') | |
else: | |
logging.info('No API specified. Summarization will not be performed.') | |
logging.debug("Platform check being performed...") | |
platform_check() | |
logging.debug("CUDA check being performed...") | |
cuda_check() | |
logging.debug("ffmpeg check being performed...") | |
check_ffmpeg() | |
llm_model = args.llm_model or None | |
try: | |
results = main(args.input_path, api_name=args.api_name, | |
api_key=args.api_key, | |
num_speakers=args.num_speakers, | |
whisper_model=args.whisper_model, | |
offset=args.offset, | |
vad_filter=args.vad_filter, | |
download_video_flag=args.video, | |
custom_prompt=args.custom_prompt, | |
overwrite=args.overwrite, | |
rolling_summarization=args.rolling_summarization, | |
detail=args.detail_level, | |
keywords=args.keywords, | |
chunk_summarization=False, | |
chunk_duration=None, | |
words_per_second=None, | |
llm_model=args.llm_model, | |
time_based=args.time_based) | |
logging.info('Transcription process completed.') | |
atexit.register(cleanup_process) | |
except Exception as e: | |
logging.error('An error occurred during the transcription process.') | |
logging.error(str(e)) | |
sys.exit(1) | |
finally: | |
cleanup_process() | |