Spaces:
Running
Running
# Article_Extractor_Lib.py | |
######################################### | |
# Article Extraction Library | |
# This library is used to handle scraping and extraction of articles from web pages. | |
# | |
#################### | |
# Function List | |
# | |
# 1. get_page_title(url) | |
# 2. get_article_text(url) | |
# 3. get_article_title(article_url_arg) | |
# | |
#################### | |
# | |
# Import necessary libraries | |
import hashlib | |
from datetime import datetime | |
import json | |
import logging | |
import os | |
import tempfile | |
from typing import Any, Dict, List, Union, Optional, Tuple | |
# | |
# 3rd-Party Imports | |
import asyncio | |
from urllib.parse import urljoin, urlparse | |
from xml.dom import minidom | |
import xml.etree.ElementTree as ET | |
# | |
# External Libraries | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
from playwright.async_api import async_playwright | |
import requests | |
import trafilatura | |
# | |
# Import Local | |
from App_Function_Libraries.DB.DB_Manager import ingest_article_to_db | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize | |
####################################################################################################################### | |
# Function Definitions | |
# | |
################################################################# | |
# | |
# Scraping-related functions: | |
def get_page_title(url: str) -> str: | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, 'html.parser') | |
title_tag = soup.find('title') | |
return title_tag.string.strip() if title_tag else "Untitled" | |
except requests.RequestException as e: | |
logging.error(f"Error fetching page title: {e}") | |
return "Untitled" | |
async def scrape_article(url: str, custom_cookies: Optional[List[Dict[str, Any]]] = None) -> Dict[str, Any]: | |
async def fetch_html(url: str) -> str: | |
async with async_playwright() as p: | |
browser = await p.chromium.launch(headless=True) | |
context = await browser.new_context( | |
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3" | |
) | |
if custom_cookies: | |
await context.add_cookies(custom_cookies) | |
page = await context.new_page() | |
await page.goto(url) | |
await page.wait_for_load_state("networkidle") | |
content = await page.content() | |
await browser.close() | |
return content | |
def extract_article_data(html: str, url: str) -> dict: | |
# FIXME - Add option for extracting comments/tables/images | |
downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) | |
metadata = trafilatura.extract_metadata(html) | |
result = { | |
'title': 'N/A', | |
'author': 'N/A', | |
'content': '', | |
'date': 'N/A', | |
'url': url, | |
'extraction_successful': False | |
} | |
if downloaded: | |
# Add metadata to content | |
result['content'] = ContentMetadataHandler.format_content_with_metadata( | |
url=url, | |
content=downloaded, | |
pipeline="Trafilatura", | |
additional_metadata={ | |
"extracted_date": metadata.date if metadata and metadata.date else 'N/A', | |
"author": metadata.author if metadata and metadata.author else 'N/A' | |
} | |
) | |
result['extraction_successful'] = True | |
if metadata: | |
result.update({ | |
'title': metadata.title if metadata.title else 'N/A', | |
'author': metadata.author if metadata.author else 'N/A', | |
'date': metadata.date if metadata.date else 'N/A' | |
}) | |
else: | |
logging.warning("Metadata extraction failed.") | |
if not downloaded: | |
logging.warning("Content extraction failed.") | |
return result | |
def convert_html_to_markdown(html: str) -> str: | |
soup = BeautifulSoup(html, 'html.parser') | |
for para in soup.find_all('p'): | |
# Add a newline at the end of each paragraph for markdown separation | |
para.append('\n') | |
# Use .get_text() with separator to keep paragraph separation | |
return soup.get_text(separator='\n\n') | |
html = await fetch_html(url) | |
article_data = extract_article_data(html, url) | |
if article_data['extraction_successful']: | |
article_data['content'] = convert_html_to_markdown(article_data['content']) | |
return article_data | |
async def scrape_and_summarize_multiple( | |
urls: str, | |
custom_prompt_arg: Optional[str], | |
api_name: str, | |
api_key: Optional[str], | |
keywords: str, | |
custom_article_titles: Optional[str], | |
system_message: Optional[str] = None, | |
summarize_checkbox: bool = False, | |
custom_cookies: Optional[List[Dict[str, Any]]] = None, | |
temperature: float = 0.7 | |
) -> List[Dict[str, Any]]: | |
urls_list = [url.strip() for url in urls.split('\n') if url.strip()] | |
custom_titles = custom_article_titles.split('\n') if custom_article_titles else [] | |
results = [] | |
errors = [] | |
# Loop over each URL to scrape and optionally summarize | |
for i, url in enumerate(urls_list): | |
custom_title = custom_titles[i] if i < len(custom_titles) else None | |
try: | |
# Scrape the article | |
article = await scrape_article(url, custom_cookies=custom_cookies) | |
if article and article['extraction_successful']: | |
if custom_title: | |
article['title'] = custom_title | |
# If summarization is requested | |
if summarize_checkbox: | |
content = article.get('content', '') | |
if content: | |
# Prepare prompts | |
system_message_final = system_message or "Act as a professional summarizer and summarize this article." | |
article_custom_prompt = custom_prompt_arg or "Act as a professional summarizer and summarize this article." | |
# Summarize the content using the summarize function | |
summary = summarize( | |
input_data=content, | |
custom_prompt_arg=article_custom_prompt, | |
api_name=api_name, | |
api_key=api_key, | |
temp=temperature, | |
system_message=system_message_final | |
) | |
article['summary'] = summary | |
logging.info(f"Summary generated for URL {url}") | |
else: | |
article['summary'] = "No content available to summarize." | |
logging.warning(f"No content to summarize for URL {url}") | |
else: | |
article['summary'] = None | |
results.append(article) | |
else: | |
error_message = f"Extraction unsuccessful for URL {url}" | |
errors.append(error_message) | |
logging.error(error_message) | |
except Exception as e: | |
error_message = f"Error processing URL {i + 1} ({url}): {str(e)}" | |
errors.append(error_message) | |
logging.error(error_message, exc_info=True) | |
if errors: | |
logging.error("\n".join(errors)) | |
if not results: | |
logging.error("No articles were successfully scraped and summarized/analyzed.") | |
return [] | |
return results | |
def scrape_and_no_summarize_then_ingest(url, keywords, custom_article_title): | |
try: | |
# Step 1: Scrape the article | |
article_data = asyncio.run(scrape_article(url)) | |
print(f"Scraped Article Data: {article_data}") # Debugging statement | |
if not article_data: | |
return "Failed to scrape the article." | |
# Use the custom title if provided, otherwise use the scraped title | |
title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') | |
author = article_data.get('author', 'Unknown') | |
content = article_data.get('content', '') | |
ingestion_date = datetime.now().strftime('%Y-%m-%d') | |
print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement | |
# Step 2: Ingest the article into the database | |
ingestion_result = ingest_article_to_db(url, title, author, content, keywords, ingestion_date, None, None) | |
# When displaying content, we might want to strip metadata | |
display_content = ContentMetadataHandler.strip_metadata(content) | |
return f"Title: {title}\nAuthor: {author}\nIngestion Result: {ingestion_result}\n\nArticle Contents: {display_content}" | |
except Exception as e: | |
logging.error(f"Error processing URL {url}: {str(e)}") | |
return f"Failed to process URL {url}: {str(e)}" | |
def scrape_from_filtered_sitemap(sitemap_file: str, filter_function) -> list: | |
""" | |
Scrape articles from a sitemap file, applying an additional filter function. | |
:param sitemap_file: Path to the sitemap file | |
:param filter_function: A function that takes a URL and returns True if it should be scraped | |
:return: List of scraped articles | |
""" | |
try: | |
tree = ET.parse(sitemap_file) | |
root = tree.getroot() | |
articles = [] | |
for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc'): | |
if filter_function(url.text): | |
article_data = scrape_article(url.text) | |
if article_data: | |
articles.append(article_data) | |
return articles | |
except ET.ParseError as e: | |
logging.error(f"Error parsing sitemap: {e}") | |
return [] | |
def is_content_page(url: str) -> bool: | |
""" | |
Determine if a URL is likely to be a content page. | |
This is a basic implementation and may need to be adjusted based on the specific website structure. | |
:param url: The URL to check | |
:return: True if the URL is likely a content page, False otherwise | |
""" | |
#Add more specific checks here based on the website's structure | |
# Exclude common non-content pages | |
exclude_patterns = [ | |
'/tag/', '/category/', '/author/', '/search/', '/page/', | |
'wp-content', 'wp-includes', 'wp-json', 'wp-admin', | |
'login', 'register', 'cart', 'checkout', 'account', | |
'.jpg', '.png', '.gif', '.pdf', '.zip' | |
] | |
return not any(pattern in url.lower() for pattern in exclude_patterns) | |
def scrape_and_convert_with_filter(source: str, output_file: str, filter_function=is_content_page, level: int = None): | |
""" | |
Scrape articles from a sitemap or by URL level, apply filtering, and convert to a single markdown file. | |
:param source: URL of the sitemap, base URL for level-based scraping, or path to a local sitemap file | |
:param output_file: Path to save the output markdown file | |
:param filter_function: Function to filter URLs (default is is_content_page) | |
:param level: URL level for scraping (None if using sitemap) | |
""" | |
if level is not None: | |
# Scraping by URL level | |
articles = scrape_by_url_level(source, level) | |
articles = [article for article in articles if filter_function(article['url'])] | |
elif source.startswith('http'): | |
# Scraping from online sitemap | |
articles = scrape_from_sitemap(source) | |
articles = [article for article in articles if filter_function(article['url'])] | |
else: | |
# Scraping from local sitemap file | |
articles = scrape_from_filtered_sitemap(source, filter_function) | |
articles = [article for article in articles if filter_function(article['url'])] | |
markdown_content = convert_to_markdown(articles) | |
with open(output_file, 'w', encoding='utf-8') as f: | |
f.write(markdown_content) | |
logging.info(f"Scraped and filtered content saved to {output_file}") | |
async def scrape_entire_site(base_url: str) -> List[Dict]: | |
""" | |
Scrape the entire site by generating a temporary sitemap and extracting content from each page. | |
:param base_url: The base URL of the site to scrape | |
:return: A list of dictionaries containing scraped article data | |
""" | |
# Step 1: Collect internal links from the site | |
links = collect_internal_links(base_url) | |
logging.info(f"Collected {len(links)} internal links.") | |
# Step 2: Generate the temporary sitemap | |
temp_sitemap_path = generate_temp_sitemap_from_links(links) | |
# Step 3: Scrape each URL in the sitemap | |
scraped_articles = [] | |
try: | |
async def scrape_and_log(link): | |
logging.info(f"Scraping {link} ...") | |
article_data = await scrape_article(link) | |
if article_data: | |
logging.info(f"Title: {article_data['title']}") | |
logging.info(f"Author: {article_data['author']}") | |
logging.info(f"Date: {article_data['date']}") | |
logging.info(f"Content: {article_data['content'][:500]}...") | |
return article_data | |
return None | |
# Use asyncio.gather to scrape multiple articles concurrently | |
scraped_articles = await asyncio.gather(*[scrape_and_log(link) for link in links]) | |
# Remove any None values (failed scrapes) | |
scraped_articles = [article for article in scraped_articles if article is not None] | |
finally: | |
# Clean up the temporary sitemap file | |
os.unlink(temp_sitemap_path) | |
logging.info("Temporary sitemap file deleted") | |
return scraped_articles | |
def scrape_by_url_level(base_url: str, level: int) -> list: | |
"""Scrape articles from URLs up to a certain level under the base URL.""" | |
def get_url_level(url: str) -> int: | |
return len(urlparse(url).path.strip('/').split('/')) | |
links = collect_internal_links(base_url) | |
filtered_links = [link for link in links if get_url_level(link) <= level] | |
return [article for link in filtered_links if (article := scrape_article(link))] | |
def scrape_from_sitemap(sitemap_url: str) -> list: | |
"""Scrape articles from a sitemap URL.""" | |
try: | |
response = requests.get(sitemap_url) | |
response.raise_for_status() | |
root = ET.fromstring(response.content) | |
return [article for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc') | |
if (article := scrape_article(url.text))] | |
except requests.RequestException as e: | |
logging.error(f"Error fetching sitemap: {e}") | |
return [] | |
# | |
# End of Scraping Functions | |
####################################################### | |
# | |
# Sitemap/Crawling-related Functions | |
def collect_internal_links(base_url: str) -> set: | |
visited = set() | |
to_visit = {base_url} | |
while to_visit: | |
current_url = to_visit.pop() | |
if current_url in visited: | |
continue | |
try: | |
response = requests.get(current_url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, 'html.parser') | |
# Collect internal links | |
for link in soup.find_all('a', href=True): | |
full_url = urljoin(base_url, link['href']) | |
# Only process links within the same domain | |
if urlparse(full_url).netloc == urlparse(base_url).netloc: | |
if full_url not in visited: | |
to_visit.add(full_url) | |
visited.add(current_url) | |
except requests.RequestException as e: | |
logging.error(f"Error visiting {current_url}: {e}") | |
continue | |
return visited | |
def generate_temp_sitemap_from_links(links: set) -> str: | |
""" | |
Generate a temporary sitemap file from collected links and return its path. | |
:param links: A set of URLs to include in the sitemap | |
:return: Path to the temporary sitemap file | |
""" | |
# Create the root element | |
urlset = ET.Element("urlset") | |
urlset.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9") | |
# Add each link to the sitemap | |
for link in links: | |
url = ET.SubElement(urlset, "url") | |
loc = ET.SubElement(url, "loc") | |
loc.text = link | |
lastmod = ET.SubElement(url, "lastmod") | |
lastmod.text = datetime.now().strftime("%Y-%m-%d") | |
changefreq = ET.SubElement(url, "changefreq") | |
changefreq.text = "daily" | |
priority = ET.SubElement(url, "priority") | |
priority.text = "0.5" | |
# Create the tree and get it as a string | |
xml_string = ET.tostring(urlset, 'utf-8') | |
# Pretty print the XML | |
pretty_xml = minidom.parseString(xml_string).toprettyxml(indent=" ") | |
# Create a temporary file | |
with tempfile.NamedTemporaryFile(mode="w", suffix=".xml", delete=False) as temp_file: | |
temp_file.write(pretty_xml) | |
temp_file_path = temp_file.name | |
logging.info(f"Temporary sitemap created at: {temp_file_path}") | |
return temp_file_path | |
def generate_sitemap_for_url(url: str) -> List[Dict[str, str]]: | |
""" | |
Generate a sitemap for the given URL using the create_filtered_sitemap function. | |
Args: | |
url (str): The base URL to generate the sitemap for | |
Returns: | |
List[Dict[str, str]]: A list of dictionaries, each containing 'url' and 'title' keys | |
""" | |
with tempfile.NamedTemporaryFile(mode="w+", suffix=".xml", delete=False) as temp_file: | |
create_filtered_sitemap(url, temp_file.name, is_content_page) | |
temp_file.seek(0) | |
tree = ET.parse(temp_file.name) | |
root = tree.getroot() | |
sitemap = [] | |
for url_elem in root.findall(".//{http://www.sitemaps.org/schemas/sitemap/0.9}url"): | |
loc = url_elem.find("{http://www.sitemaps.org/schemas/sitemap/0.9}loc").text | |
sitemap.append({"url": loc, "title": loc.split("/")[-1] or url}) # Use the last part of the URL as a title | |
return sitemap | |
def create_filtered_sitemap(base_url: str, output_file: str, filter_function): | |
""" | |
Create a sitemap from internal links and filter them based on a custom function. | |
:param base_url: The base URL of the website | |
:param output_file: The file to save the sitemap to | |
:param filter_function: A function that takes a URL and returns True if it should be included | |
""" | |
links = collect_internal_links(base_url) | |
filtered_links = set(filter(filter_function, links)) | |
root = ET.Element("urlset") | |
root.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9") | |
for link in filtered_links: | |
url = ET.SubElement(root, "url") | |
loc = ET.SubElement(url, "loc") | |
loc.text = link | |
tree = ET.ElementTree(root) | |
tree.write(output_file, encoding='utf-8', xml_declaration=True) | |
print(f"Filtered sitemap saved to {output_file}") | |
# | |
# End of Crawling Functions | |
################################################################# | |
# | |
# Utility Functions | |
def convert_to_markdown(articles: list) -> str: | |
"""Convert a list of article data into a single markdown document.""" | |
markdown = "" | |
for article in articles: | |
markdown += f"# {article['title']}\n\n" | |
markdown += f"Author: {article['author']}\n" | |
markdown += f"Date: {article['date']}\n\n" | |
markdown += f"{article['content']}\n\n" | |
markdown += "---\n\n" # Separator between articles | |
return markdown | |
def compute_content_hash(content: str) -> str: | |
return hashlib.sha256(content.encode('utf-8')).hexdigest() | |
def load_hashes(filename: str) -> Dict[str, str]: | |
if os.path.exists(filename): | |
with open(filename, 'r') as f: | |
return json.load(f) | |
else: | |
return {} | |
def save_hashes(hashes: Dict[str, str], filename: str): | |
with open(filename, 'w') as f: | |
json.dump(hashes, f) | |
def has_page_changed(url: str, new_hash: str, stored_hashes: Dict[str, str]) -> bool: | |
old_hash = stored_hashes.get(url) | |
return old_hash != new_hash | |
# | |
# | |
################################################### | |
# | |
# Bookmark Parsing Functions | |
def parse_chromium_bookmarks(json_data: dict) -> Dict[str, Union[str, List[str]]]: | |
""" | |
Parse Chromium-based browser bookmarks from JSON data. | |
:param json_data: The JSON data from the bookmarks file | |
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
""" | |
bookmarks = {} | |
def recurse_bookmarks(nodes): | |
for node in nodes: | |
if node.get('type') == 'url': | |
name = node.get('name') | |
url = node.get('url') | |
if name and url: | |
if name in bookmarks: | |
if isinstance(bookmarks[name], list): | |
bookmarks[name].append(url) | |
else: | |
bookmarks[name] = [bookmarks[name], url] | |
else: | |
bookmarks[name] = url | |
elif node.get('type') == 'folder' and 'children' in node: | |
recurse_bookmarks(node['children']) | |
# Chromium bookmarks have a 'roots' key | |
if 'roots' in json_data: | |
for root in json_data['roots'].values(): | |
if 'children' in root: | |
recurse_bookmarks(root['children']) | |
else: | |
recurse_bookmarks(json_data.get('children', [])) | |
return bookmarks | |
def parse_firefox_bookmarks(html_content: str) -> Dict[str, Union[str, List[str]]]: | |
""" | |
Parse Firefox bookmarks from HTML content. | |
:param html_content: The HTML content from the bookmarks file | |
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
""" | |
bookmarks = {} | |
soup = BeautifulSoup(html_content, 'html.parser') | |
# Firefox stores bookmarks within <a> tags inside <dt> | |
for a in soup.find_all('a'): | |
name = a.get_text() | |
url = a.get('href') | |
if name and url: | |
if name in bookmarks: | |
if isinstance(bookmarks[name], list): | |
bookmarks[name].append(url) | |
else: | |
bookmarks[name] = [bookmarks[name], url] | |
else: | |
bookmarks[name] = url | |
return bookmarks | |
def load_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
""" | |
Load bookmarks from a file (JSON for Chrome/Edge or HTML for Firefox). | |
:param file_path: Path to the bookmarks file | |
:return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
:raises ValueError: If the file format is unsupported or parsing fails | |
""" | |
if not os.path.isfile(file_path): | |
logging.error(f"File '{file_path}' does not exist.") | |
raise FileNotFoundError(f"File '{file_path}' does not exist.") | |
_, ext = os.path.splitext(file_path) | |
ext = ext.lower() | |
if ext == '.json' or ext == '': | |
# Attempt to parse as JSON (Chrome/Edge) | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
json_data = json.load(f) | |
return parse_chromium_bookmarks(json_data) | |
except json.JSONDecodeError: | |
logging.error("Failed to parse JSON. Ensure the file is a valid Chromium bookmarks JSON file.") | |
raise ValueError("Invalid JSON format for Chromium bookmarks.") | |
elif ext in ['.html', '.htm']: | |
# Parse as HTML (Firefox) | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
html_content = f.read() | |
return parse_firefox_bookmarks(html_content) | |
except Exception as e: | |
logging.error(f"Failed to parse HTML bookmarks: {e}") | |
raise ValueError(f"Failed to parse HTML bookmarks: {e}") | |
else: | |
logging.error("Unsupported file format. Please provide a JSON (Chrome/Edge) or HTML (Firefox) bookmarks file.") | |
raise ValueError("Unsupported file format for bookmarks.") | |
def collect_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
""" | |
Collect bookmarks from the provided bookmarks file and return a dictionary. | |
:param file_path: Path to the bookmarks file | |
:return: Dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
""" | |
try: | |
bookmarks = load_bookmarks(file_path) | |
logging.info(f"Successfully loaded {len(bookmarks)} bookmarks from '{file_path}'.") | |
return bookmarks | |
except (FileNotFoundError, ValueError) as e: | |
logging.error(f"Error loading bookmarks: {e}") | |
return {} | |
def parse_csv_urls(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
""" | |
Parse URLs from a CSV file. The CSV should have at minimum a 'url' column, | |
and optionally a 'title' or 'name' column. | |
:param file_path: Path to the CSV file | |
:return: Dictionary with titles/names as keys and URLs as values | |
""" | |
try: | |
# Read CSV file | |
df = pd.read_csv(file_path) | |
# Check if required columns exist | |
if 'url' not in df.columns: | |
raise ValueError("CSV must contain a 'url' column") | |
# Initialize result dictionary | |
urls_dict = {} | |
# Determine which column to use as key | |
key_column = next((col for col in ['title', 'name'] if col in df.columns), None) | |
for idx in range(len(df)): | |
url = df.iloc[idx]['url'].strip() | |
# Use title/name if available, otherwise use URL as key | |
if key_column: | |
key = df.iloc[idx][key_column].strip() | |
else: | |
key = f"Article {idx + 1}" | |
# Handle duplicate keys | |
if key in urls_dict: | |
if isinstance(urls_dict[key], list): | |
urls_dict[key].append(url) | |
else: | |
urls_dict[key] = [urls_dict[key], url] | |
else: | |
urls_dict[key] = url | |
return urls_dict | |
except pd.errors.EmptyDataError: | |
logging.error("The CSV file is empty") | |
return {} | |
except Exception as e: | |
logging.error(f"Error parsing CSV file: {str(e)}") | |
return {} | |
def collect_urls_from_file(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
""" | |
Unified function to collect URLs from either bookmarks or CSV files. | |
:param file_path: Path to the file (bookmarks or CSV) | |
:return: Dictionary with names as keys and URLs as values | |
""" | |
_, ext = os.path.splitext(file_path) | |
ext = ext.lower() | |
if ext == '.csv': | |
return parse_csv_urls(file_path) | |
else: | |
return collect_bookmarks(file_path) | |
# Usage: | |
# from Article_Extractor_Lib import collect_bookmarks | |
# | |
# # Path to your bookmarks file | |
# # For Chrome or Edge (JSON format) | |
# chromium_bookmarks_path = "/path/to/Bookmarks" | |
# | |
# # For Firefox (HTML format) | |
# firefox_bookmarks_path = "/path/to/bookmarks.html" | |
# | |
# # Collect bookmarks from Chromium-based browser | |
# chromium_bookmarks = collect_bookmarks(chromium_bookmarks_path) | |
# print("Chromium Bookmarks:") | |
# for name, url in chromium_bookmarks.items(): | |
# print(f"{name}: {url}") | |
# | |
# # Collect bookmarks from Firefox | |
# firefox_bookmarks = collect_bookmarks(firefox_bookmarks_path) | |
# print("\nFirefox Bookmarks:") | |
# for name, url in firefox_bookmarks.items(): | |
# print(f"{name}: {url}") | |
# | |
# End of Bookmarking Parsing Functions | |
##################################################################### | |
##################################################################### | |
# | |
# Article Scraping Metadata Functions | |
class ContentMetadataHandler: | |
"""Handles the addition and parsing of metadata for scraped content.""" | |
METADATA_START = "[METADATA]" | |
METADATA_END = "[/METADATA]" | |
def format_content_with_metadata( | |
url: str, | |
content: str, | |
pipeline: str = "Trafilatura", | |
additional_metadata: Optional[Dict[str, Any]] = None | |
) -> str: | |
""" | |
Format content with metadata header. | |
Args: | |
url: The source URL | |
content: The scraped content | |
pipeline: The scraping pipeline used | |
additional_metadata: Optional dictionary of additional metadata to include | |
Returns: | |
Formatted content with metadata header | |
""" | |
metadata = { | |
"url": url, | |
"ingestion_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"content_hash": hashlib.sha256(content.encode('utf-8')).hexdigest(), | |
"scraping_pipeline": pipeline | |
} | |
# Add any additional metadata | |
if additional_metadata: | |
metadata.update(additional_metadata) | |
formatted_content = f"""{ContentMetadataHandler.METADATA_START} | |
{json.dumps(metadata, indent=2)} | |
{ContentMetadataHandler.METADATA_END} | |
{content}""" | |
return formatted_content | |
def extract_metadata(content: str) -> Tuple[Dict[str, Any], str]: | |
""" | |
Extract metadata and content separately. | |
Args: | |
content: The full content including metadata | |
Returns: | |
Tuple of (metadata dict, clean content) | |
""" | |
try: | |
metadata_start = content.index(ContentMetadataHandler.METADATA_START) + len( | |
ContentMetadataHandler.METADATA_START) | |
metadata_end = content.index(ContentMetadataHandler.METADATA_END) | |
metadata_json = content[metadata_start:metadata_end].strip() | |
metadata = json.loads(metadata_json) | |
clean_content = content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip() | |
return metadata, clean_content | |
except (ValueError, json.JSONDecodeError) as e: | |
return {}, content | |
def has_metadata(content: str) -> bool: | |
""" | |
Check if content contains metadata. | |
Args: | |
content: The content to check | |
Returns: | |
bool: True if metadata is present | |
""" | |
return (ContentMetadataHandler.METADATA_START in content and | |
ContentMetadataHandler.METADATA_END in content) | |
def strip_metadata(content: str) -> str: | |
""" | |
Remove metadata from content if present. | |
Args: | |
content: The content to strip metadata from | |
Returns: | |
Content without metadata | |
""" | |
try: | |
metadata_end = content.index(ContentMetadataHandler.METADATA_END) | |
return content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip() | |
except ValueError: | |
return content | |
def get_content_hash(content: str) -> str: | |
""" | |
Get hash of content without metadata. | |
Args: | |
content: The content to hash | |
Returns: | |
SHA-256 hash of the clean content | |
""" | |
clean_content = ContentMetadataHandler.strip_metadata(content) | |
return hashlib.sha256(clean_content.encode('utf-8')).hexdigest() | |
def content_changed(old_content: str, new_content: str) -> bool: | |
""" | |
Check if content has changed by comparing hashes. | |
Args: | |
old_content: Previous version of content | |
new_content: New version of content | |
Returns: | |
bool: True if content has changed | |
""" | |
old_hash = ContentMetadataHandler.get_content_hash(old_content) | |
new_hash = ContentMetadataHandler.get_content_hash(new_content) | |
return old_hash != new_hash | |
# | |
# End of Article_Extractor_Lib.py | |
####################################################################################################################### | |