diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,15 +1,12 @@ #!/usr/bin/env python3 -# Std Lib Imports import argparse import asyncio import atexit import configparser -from datetime import datetime import hashlib import json import logging import os -from pathlib import Path import platform import re import shutil @@ -18,75 +15,62 @@ import sqlite3 import subprocess import sys import time -import unicodedata from multiprocessing import process -from typing import Callable, Dict, List, Optional, Tuple -from urllib.parse import urlparse, parse_qs, urlencode, urlunparse -import webbrowser +from typing import List, Tuple, Optional, Dict, Callable import zipfile +from datetime import datetime +from typing import List, Tuple +from typing import Optional +import webbrowser -# 3rd-Party Module Imports from bs4 import BeautifulSoup import gradio as gr -import nltk +from huggingface_hub import InferenceClient from playwright.async_api import async_playwright import requests from requests.exceptions import RequestException +from SQLite_DB import * +import tiktoken import trafilatura +import unicodedata import yt_dlp - # OpenAI Tokenizer support from openai import OpenAI from tqdm import tqdm import tiktoken -# Other Tokenizers -from transformers import GPT2Tokenizer - ####################### -# Logging Setup -# log_level = "DEBUG" logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s') os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" -############# -# Global variables setup - -custom_prompt = None - # # -####################### - -####################### +####### # Function Sections # - - -abc_xyz = """ - Database Setup - Config Loading - System Checks - DataBase Functions - Processing Paths and local file handling - Video Download/Handling - Audio Transcription - Diarization - Chunking-related Techniques & Functions - Tokenization-related Techniques & Functions - Summarizers - Gradio UI - Main -""" - -# +# Database Setup +# Config Loading +# System Checks +# DataBase Functions +# Processing Paths and local file handling +# Video Download/Handling +# Audio Transcription +# Diarization +# Chunking-related Techniques & Functions +# Tokenization-related Techniques & Functions +# Summarizers +# Gradio UI +# Main # -####################### +####### +# To Do +# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb -####################### + +#### # # TL/DW: Too Long Didn't Watch # @@ -113,19 +97,16 @@ abc_xyz = """ # python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it. # Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server. # -####################### - +### ####################### -# Random issues I've encountered and how I solved them: +# Random issues I've encountered and how I solved them: # 1. Something about cuda nn library missing, even though cuda is installed... # https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk. -# Or https://github.com/SYSTRAN/faster-whisper/issues/85 # # 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme' # Resolved through adding --user to the pip install command # -# 3. ? # ####################### @@ -175,33 +156,29 @@ logging.debug(f"Loaded openAI Face API Key: {openai_api_key}") huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}") -openrouter_api_key = config.get('Local-API', 'openrouter', fallback=None) -logging.debug(f"Loaded OpenRouter API Key: {openrouter_api_key}") - # Models anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192') openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus') -openrouter_model = config.get('API', 'openrouter_model', fallback='microsoft/wizardlm-2-8x22b') # Local-Models kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') - llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') - ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') - tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None) - vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions') vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None) +# Chunk settings for timed chunking summarization +DEFAULT_CHUNK_DURATION = config.getint('Settings', 'chunk_duration', fallback='30') +WORDS_PER_SECOND = config.getint('Settings', 'words_per_second', fallback='3') + # Retrieve output paths from the configuration file output_path = config.get('Paths', 'output_path', fallback='results') @@ -215,12 +192,7 @@ processing_choice = config.get('Processing', 'processing_choice', fallback='cpu' # ####################### - -####################### -# System Startup Notice -# - -# Dirty hack - sue me. - FIXME - fix this... +# Dirty hack - sue me. os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' whisper_models = ["small", "medium", "small.en", "medium.en"] @@ -235,9 +207,7 @@ source_languages = { } source_language_list = [key[0] for key in source_languages.items()] - -def print_hello(): - print(r"""_____ _ ________ _ _ +print(r"""_____ _ ________ _ _ |_ _|| | / /| _ \| | | | _ | | | | / / | | | || | | |(_) | | | | / / | | | || |/\| | @@ -260,8 +230,131 @@ def print_hello(): | (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | \__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| """) - time.sleep(1) - return +time.sleep(1) +####################################################################################################################### +# System Checks +# +# + +# Perform Platform Check +userOS = "" + + +def platform_check(): + global userOS + if platform.system() == "Linux": + print("Linux OS detected \n Running Linux appropriate commands") + userOS = "Linux" + elif platform.system() == "Windows": + print("Windows OS detected \n Running Windows appropriate commands") + userOS = "Windows" + else: + print("Other OS detected \n Maybe try running things manually?") + exit() + + +# Check for NVIDIA GPU and CUDA availability +def cuda_check(): + global processing_choice + try: + nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode() + if "NVIDIA-SMI" in nvidia_smi: + print("NVIDIA GPU with CUDA is available.") + processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available + else: + print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") + processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available + except subprocess.CalledProcessError: + print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") + processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails + + +# Ask user if they would like to use either their GPU or their CPU for transcription +def decide_cpugpu(): + global processing_choice + processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") + if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): + print("You've chosen to use the GPU.") + logging.debug("GPU is being used for processing") + processing_choice = "cuda" + elif processing_input.lower() == "cpu" or processing_input == "2": + print("You've chosen to use the CPU.") + logging.debug("CPU is being used for processing") + processing_choice = "cpu" + else: + print("Invalid choice. Please select either GPU or CPU.") + + +# check for existence of ffmpeg +def check_ffmpeg(): + if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): + logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") + pass + else: + logging.debug("ffmpeg not installed on the local system/in local PATH") + print( + "ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of " + "choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") + if userOS == "Windows": + download_ffmpeg() + elif userOS == "Linux": + print( + "You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg'," + "'dnf install ffmpeg' or 'pacman', etc.") + else: + logging.debug("running an unsupported OS") + print("You're running an unspported/Un-tested OS") + exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") + if exit_script == "y" or "yes" or "1": + exit() + + +# Download ffmpeg +def download_ffmpeg(): + user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") + if user_choice.lower() == 'yes' or 'y' or '1': + print("Downloading ffmpeg") + url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" + response = requests.get(url) + + if response.status_code == 200: + print("Saving ffmpeg zip file") + logging.debug("Saving ffmpeg zip file") + zip_path = "ffmpeg-release-essentials.zip" + with open(zip_path, 'wb') as file: + file.write(response.content) + + logging.debug("Extracting the 'ffmpeg.exe' file from the zip") + print("Extracting ffmpeg.exe from zip file to '/Bin' folder") + with zipfile.ZipFile(zip_path, 'r') as zip_ref: + ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe" + + logging.debug("checking if the './Bin' folder exists, creating if not") + bin_folder = "Bin" + if not os.path.exists(bin_folder): + logging.debug("Creating a folder for './Bin', it didn't previously exist") + os.makedirs(bin_folder) + + logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") + zip_ref.extract(ffmpeg_path, path=bin_folder) + + logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") + src_path = os.path.join(bin_folder, ffmpeg_path) + dst_path = os.path.join(bin_folder, "ffmpeg.exe") + shutil.move(src_path, dst_path) + + logging.debug("Removing ffmpeg zip file") + print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") + os.remove(zip_path) + + logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") + print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") + else: + logging.error("Failed to download the zip file.") + print("Failed to download the zip file.") + else: + logging.debug("User chose to not download ffmpeg") + print("ffmpeg will not be downloaded.") # @@ -272,18 +365,11 @@ def print_hello(): ######################################################################################################################## # DB Setup # -# 1. platform_check() -# 2. cuda_check() -# 3. decide_cpugpu() -# 4. check_ffmpeg() -# 5. download_ffmpeg() # -####################### +# FIXME -####################### # DB Functions -# # create_tables() # add_keyword() # delete_keyword() @@ -295,6 +381,8 @@ def print_hello(): # export_to_csv() # is_valid_url() # is_valid_date() + +# # ######################################################################################################################## @@ -302,53 +390,53 @@ def print_hello(): ######################################################################################################################## # Processing Paths and local file handling # -# Function List -# 1. read_paths_from_file(file_path) -# 2. process_path(path) -# 3. process_local_file(file_path) -# 4. read_paths_from_file(file_path: str) -> List[str] -# # -######################################################################################################################## + +def read_paths_from_file(file_path): + """ Reads a file containing URLs or local file paths and returns them as a list. """ + paths = [] # Initialize paths as an empty list + with open(file_path, 'r') as file: + paths = [line.strip() for line in file] + return paths -####################################################################################################################### -# Online Article Extraction / Handling -# -# Article_Extractor_Lib.py -######################################### -# Article Extraction Library -# This library is used to handle scraping and extraction of articles from web pages. -# Currently, uses a combination of beatifulsoup4 and trafilatura to extract article text. -# Firecrawl would be a better option for this, but it is not yet implemented. -#### +def process_path(path): + """ Decides whether the path is a URL or a local file and processes accordingly. """ + if path.startswith('http'): + logging.debug("file is a URL") + # For YouTube URLs, modify to download and extract info + return get_youtube(path) + elif os.path.exists(path): + logging.debug("File is a path") + # For local files, define a function to handle them + return process_local_file(path) + else: + logging.error(f"Path does not exist: {path}") + return None + + +# FIXME +def process_local_file(file_path): + logging.info(f"Processing local file: {file_path}") + title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) + info_dict = {'title': title} + logging.debug(f"Creating {title} directory...") + download_path = create_download_directory(title) + logging.debug(f"Converting '{title}' to an audio file (wav).") + audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction + logging.debug(f"'{title}' successfully converted to an audio file (wav).") + return download_path, info_dict, audio_file + -#################### -# Function List # -# 1. get_page_title(url) -# 2. get_article_text(url) -# 3. get_article_title(article_url_arg) # -#################### +####################################################################################################################### +####################################################################################################################### +# Online Article Extraction / Handling +# -# Import necessary libraries -import os -import logging -import huggingface_hub -import tokenizers -import torchvision -import transformers -# 3rd-Party Imports -import asyncio -import playwright -from playwright.async_api import async_playwright -from bs4 import BeautifulSoup -import requests -import trafilatura -# Import Local def get_page_title(url: str) -> str: try: response = requests.get(url) @@ -361,361 +449,384 @@ def get_page_title(url: str) -> str: return "Untitled" +def get_article_text(url: str) -> str: + pass + + def get_artice_title(article_url_arg: str) -> str: # Use beautifulsoup to get the page title - Really should be using ytdlp for this.... article_title = get_page_title(article_url_arg) -def scrape_article(url): - async def fetch_html(url: str) -> str: - async with async_playwright() as p: - browser = await p.chromium.launch(headless=True) - context = await browser.new_context( - user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3") - page = await context.new_page() - await page.goto(url) - await page.wait_for_load_state("networkidle") # Wait for the network to be idle - content = await page.content() - await browser.close() - return content +# +# +####################################################################################################################### - def extract_article_data(html: str) -> dict: - downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) - if downloaded: - metadata = trafilatura.extract_metadata(html) - if metadata: - return { - 'title': metadata.title if metadata.title else 'N/A', - 'author': metadata.author if metadata.author else 'N/A', - 'content': downloaded, - 'date': metadata.date if metadata.date else 'N/A', - } - else: - print("Metadata extraction failed.") - return None - else: - print("Content extraction failed.") - return None - def convert_html_to_markdown(html: str) -> str: - soup = BeautifulSoup(html, 'html.parser') - # Convert each paragraph to markdown - for para in soup.find_all('p'): - para.append('\n') # Add a newline at the end of each paragraph for markdown separation +####################################################################################################################### +# Video Download/Handling +# - # Use .get_text() with separator to keep paragraph separation - text = soup.get_text(separator='\n\n') +def sanitize_filename(filename): + return re.sub(r'[<>:"/\\|?*]', '_', filename) - return text - async def fetch_and_extract_article(url: str): - html = await fetch_html(url) - print("HTML Content:", html[:500]) # Print first 500 characters of the HTML for inspection - article_data = extract_article_data(html) - if article_data: - article_data['content'] = convert_html_to_markdown(article_data['content']) - return article_data - else: +def get_video_info(url: str) -> dict: + ydl_opts = { + 'quiet': True, + 'no_warnings': True, + 'skip_download': True, + } + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + try: + info_dict = ydl.extract_info(url, download=False) + return info_dict + except Exception as e: + logging.error(f"Error extracting video info: {e}") return None - # Using asyncio.run to handle event loop creation and execution - article_data = asyncio.run(fetch_and_extract_article(url)) - return article_data - -# -# -####################################################################################################################### -# -# -# Article_Summarization_Lib.py - -# Import necessary libraries -import datetime -from datetime import datetime -import json -import os -import logging -# 3rd-Party Imports -import bs4 -import huggingface_hub -import tokenizers -import torchvision -import transformers -# Local Imports +def process_url(url, + num_speakers, + whisper_model, + custom_prompt, + offset, + api_name, + api_key, + vad_filter, + download_video, + download_audio, + rolling_summarization, + detail_level, + question_box, + keywords, + chunk_summarization, + chunk_duration_input, + words_per_second_input, + ): + # Validate input + if not url: + return "No URL provided.", "No URL provided.", None, None, None, None, None, None + if not is_valid_url(url): + return "Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None + print("API Name received:", api_name) # Debugging line + logging.info(f"Processing URL: {url}") + video_file_path = None -def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt): try: - # Check if content is not empty or whitespace - if not content.strip(): - raise ValueError("Content is empty.") - + # Instantiate the database, db as a instance of the Database class db = Database() - create_tables() - keyword_list = keywords.split(',') if keywords else ["default"] - keyword_str = ', '.join(keyword_list) - - # Set default values for missing fields - url = url or 'Unknown' - title = title or 'Unknown' - author = author or 'Unknown' - keywords = keywords or 'default' - summary = summary or 'No summary available' - ingestion_date = ingestion_date or datetime.datetime.now().strftime('%Y-%m-%d') + media_url = url - # Log the values of all fields before calling add_media_with_keywords - logging.debug(f"URL: {url}") - logging.debug(f"Title: {title}") - logging.debug(f"Author: {author}") - logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content - logging.debug(f"Keywords: {keywords}") - logging.debug(f"Summary: {summary}") - logging.debug(f"Ingestion Date: {ingestion_date}") - logging.debug(f"Custom Prompt: {custom_prompt}") + info_dict = get_youtube(url) # Extract video information using yt_dlp + media_title = info_dict['title'] if 'title' in info_dict else 'Untitled' - # Check if any required field is empty and log the specific missing field - if not url: - logging.error("URL is missing.") - raise ValueError("URL is missing.") - if not title: - logging.error("Title is missing.") - raise ValueError("Title is missing.") - if not content: - logging.error("Content is missing.") - raise ValueError("Content is missing.") - if not keywords: - logging.error("Keywords are missing.") - raise ValueError("Keywords are missing.") - if not summary: - logging.error("Summary is missing.") - raise ValueError("Summary is missing.") - if not ingestion_date: - logging.error("Ingestion date is missing.") - raise ValueError("Ingestion date is missing.") - if not custom_prompt: - logging.error("Custom prompt is missing.") - raise ValueError("Custom prompt is missing.") + results = main(url, api_name=api_name, api_key=api_key, + num_speakers=num_speakers, + whisper_model=whisper_model, + offset=offset, + vad_filter=vad_filter, + download_video_flag=download_video, + custom_prompt=custom_prompt, + overwrite=args.overwrite, + rolling_summarization=rolling_summarization, + detail=detail_level, + keywords=keywords, + chunk_summarization=chunk_summarization, + chunk_duration=chunk_duration_input, + words_per_second=words_per_second_input, + ) - # Add media with keywords to the database - result = add_media_with_keywords( - url=url, - title=title, - media_type='article', - content=content, - keywords=keyword_str or "article_default", - prompt=custom_prompt or None, - summary=summary or "No summary generated", - transcription_model=None, # or some default value if applicable - author=author or 'Unknown', - ingestion_date=ingestion_date - ) - return result - except Exception as e: - logging.error(f"Failed to ingest article to the database: {e}") - return str(e) + if not results: + return "No URL provided.", "No URL provided.", None, None, None, None, None, None + transcription_result = results[0] + transcription_text = json.dumps(transcription_result['transcription'], indent=2) + summary_text = transcription_result.get('summary', 'Summary not available') -def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title): - # Step 1: Scrape the article - article_data = scrape_article(url) - print(f"Scraped Article Data: {article_data}") # Debugging statement - if not article_data: - return "Failed to scrape the article." + # Prepare file paths for transcription and summary + # Sanitize filenames + audio_file_sanitized = sanitize_filename(transcription_result['audio_file']) + json_file_path = audio_file_sanitized.replace('.wav', '.segments_pretty.json') + summary_file_path = audio_file_sanitized.replace('.wav', '_summary.txt') - # Use the custom title if provided, otherwise use the scraped title - title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') - author = article_data.get('author', 'Unknown') - content = article_data.get('content', '') - ingestion_date = datetime.now().strftime('%Y-%m-%d') + logging.debug(f"Transcription result: {transcription_result}") + logging.debug(f"Audio file path: {transcription_result['audio_file']}") - print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement + # Write the transcription to the JSON File + try: + with open(json_file_path, 'w') as json_file: + json.dump(transcription_result['transcription'], json_file, indent=2) + except IOError as e: + logging.error(f"Error writing transcription to JSON file: {e}") - # Custom prompt for the article - article_custom_prompt = custom_prompt_arg or "Summarize this article." + # Write the summary to the summary file + with open(summary_file_path, 'w') as summary_file: + summary_file.write(summary_text) - # Step 2: Summarize the article - summary = None - if api_name: - logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}") + if download_video: + video_file_path = transcription_result['video_path'] if 'video_path' in transcription_result else None - # Sanitize filename for saving the JSON file - sanitized_title = sanitize_filename(title) - json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json") + # Check if files exist before returning paths + if not os.path.exists(json_file_path): + raise FileNotFoundError(f"File not found: {json_file_path}") + if not os.path.exists(summary_file_path): + raise FileNotFoundError(f"File not found: {summary_file_path}") - with open(json_file_path, 'w') as json_file: - json.dump([{'text': content}], json_file, indent=2) + formatted_transcription = format_transcription(transcription_result) + # Check for chunk summarization + if chunk_summarization: + chunk_duration = chunk_duration_input if chunk_duration_input else DEFAULT_CHUNK_DURATION + words_per_second = words_per_second_input if words_per_second_input else WORDS_PER_SECOND + summary_text = summarize_chunks(api_name, api_key, transcription_result['transcription'], chunk_duration, + words_per_second) + + # FIXME - This is a mess + # # Check for time-based chunking summarization + # if time_based_summarization: + # logging.info("MAIN: Time-based Summarization") + # + # # Set the json_file_path + # json_file_path = audio_file.replace('.wav', '.segments.json') + # + # # Perform time-based summarization + # summary = time_chunk_summarize(api_name, api_key, json_file_path, time_chunk_duration, custom_prompt) + # + # # Handle the summarized output + # if summary: + # transcription_result['summary'] = summary + # logging.info("MAIN: Time-based Summarization successful.") + # save_summary_to_file(summary, json_file_path) + # else: + # logging.warning("MAIN: Time-based Summarization failed.") + + # Add media to the database try: - if api_name.lower() == 'openai': - openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) - logging.debug(f"Article_Summarizer: trying to summarize with openAI") - summary = summarize_with_openai(openai_api_key, json_file_path, article_custom_prompt) - elif api_name.lower() == "anthropic": - anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with anthropic") - summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model, - custom_prompt_arg=article_custom_prompt) - elif api_name.lower() == "cohere": - cohere_api_key = api_key if api_key else config.get('API', 'cohere_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with cohere") - summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, - custom_prompt_arg=article_custom_prompt) - elif api_name.lower() == "groq": - groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with Groq") - summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, - custom_prompt_arg=article_custom_prompt) - elif api_name.lower() == "llama": - llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) - llama_ip = llama_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with Llama.cpp") - summary = summarize_with_llama(llama_ip, json_file_path, llama_token, article_custom_prompt) - elif api_name.lower() == "kobold": - kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None) - kobold_ip = kobold_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with kobold.cpp") - summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, article_custom_prompt) - elif api_name.lower() == "ooba": - ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None) - ooba_ip = ooba_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with oobabooga") - summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, article_custom_prompt) - elif api_name.lower() == "tabbyapi": - tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None) - tabbyapi_ip = tabby_api_IP - logging.debug(f"Article_Summarizer: Trying to summarize with tabbyapi") - tabby_model = summarize.llm_model - summary = summarize_with_tabbyapi(tabbyapi_key, tabbyapi_ip, json_file_path, tabby_model, - article_custom_prompt) - elif api_name.lower() == "vllm": - logging.debug(f"Article_Summarizer: Trying to summarize with VLLM") - summary = summarize_with_vllm(vllm_api_url, vllm_api_key, summarize.llm_model, json_file_path, - article_custom_prompt) - elif api_name.lower() == "huggingface": - huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with huggingface") - summary = summarize_with_huggingface(huggingface_api_key, json_file_path, article_custom_prompt) - elif api_name.lower() == "openrouter": - openrouter_api_key = api_key if api_key else config.get('API', 'openrouter_api_key', fallback=None) - logging.debug(f"Article_Summarizer: Trying to summarize with openrouter") - summary = summarize_with_openrouter(openrouter_api_key, json_file_path, article_custom_prompt) - except requests.exceptions.ConnectionError as e: - logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}") + # Ensure these variables are correctly populated + custom_prompt = args.custom_prompt if args.custom_prompt else ("\n\nabove is the transcript of a video " + "Please read through the transcript carefully. Identify the main topics that are discussed over the " + "course of the transcript. Then, summarize the key points about each main topic in a concise bullet " + "point. The bullet points should cover the key information conveyed about each topic in the video, " + "but should be much shorter than the full transcript. Please output your bullet point summary inside " + " tags.") - if summary: - logging.info(f"Article_Summarizer: Summary generated using {api_name} API") - save_summary_to_file(summary, json_file_path) - else: - summary = "Summary not available" - logging.warning(f"Failed to generate summary using {api_name} API") + db = Database() + create_tables() + media_url = url + # FIXME - IDK? + video_info = get_video_info(media_url) + media_title = get_page_title(media_url) + media_type = "video" + media_content = transcription_text + keyword_list = keywords.split(',') if keywords else ["default"] + media_keywords = ', '.join(keyword_list) + media_author = "auto_generated" + media_ingestion_date = datetime.now().strftime('%Y-%m-%d') + transcription_model = whisper_model # Add the transcription model used - else: - summary = "Article Summarization: No API provided for summarization." + # Log the values before calling the function + logging.info(f"Media URL: {media_url}") + logging.info(f"Media Title: {media_title}") + logging.info(f"Media Type: {media_type}") + logging.info(f"Media Content: {media_content}") + logging.info(f"Media Keywords: {media_keywords}") + logging.info(f"Media Author: {media_author}") + logging.info(f"Ingestion Date: {media_ingestion_date}") + logging.info(f"Custom Prompt: {custom_prompt}") + logging.info(f"Summary Text: {summary_text}") + logging.info(f"Transcription Model: {transcription_model}") - print(f"Summary: {summary}") # Debugging statement + # Check if any required field is empty + if not media_url or not media_title or not media_type or not media_content or not media_keywords or not custom_prompt or not summary_text: + raise InputError("Please provide all required fields.") - # Step 3: Ingest the article into the database - ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, - article_custom_prompt) + add_media_with_keywords( + url=media_url, + title=media_title, + media_type=media_type, + content=media_content, + keywords=media_keywords, + prompt=custom_prompt, + summary=summary_text, + transcription_model=transcription_model, # Pass the transcription model + author=media_author, + ingestion_date=media_ingestion_date + ) + except Exception as e: + logging.error(f"Failed to add media to the database: {e}") - return f"Title: {title}\nAuthor: {author}\nSummary: {summary}\nIngestion Result: {ingestion_result}" + if summary_file_path and os.path.exists(summary_file_path): + return transcription_text, summary_text, json_file_path, summary_file_path, video_file_path, None # audio_file_path + else: + return transcription_text, summary_text, json_file_path, None, video_file_path, None # audio_file_path + except Exception as e: + logging.error(f"Error processing URL: {e}") + return str(e), 'Error processing the request.', None, None, None, None -def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title): - title = custom_article_title.strip() if custom_article_title else "Unstructured Text" - author = "Unknown" - ingestion_date = datetime.now().strftime('%Y-%m-%d') +def create_download_directory(title): + base_dir = "Results" + # Remove characters that are illegal in Windows filenames and normalize + safe_title = normalize_title(title) + logging.debug(f"{title} successfully normalized") + session_path = os.path.join(base_dir, safe_title) + if not os.path.exists(session_path): + os.makedirs(session_path, exist_ok=True) + logging.debug(f"Created directory for downloaded video: {session_path}") + else: + logging.debug(f"Directory already exists for downloaded video: {session_path}") + return session_path - # Summarize the unstructured text - if api_name: - json_file_path = f"Results/{title.replace(' ', '_')}_segments.json" - with open(json_file_path, 'w') as json_file: - json.dump([{'text': text}], json_file, indent=2) - if api_name.lower() == 'openai': - summary = summarize_with_openai(api_key, json_file_path, custom_prompt) - # Add other APIs as needed +def normalize_title(title): + # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters + title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') + title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', + '').replace( + '<', '').replace('>', '').replace('|', '') + return title + + +def get_youtube(video_url): + ydl_opts = { + 'format': 'bestaudio[ext=m4a]', + 'noplaylist': False, + 'quiet': True, + 'extract_flat': True + } + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + logging.debug("About to extract youtube info") + info_dict = ydl.extract_info(video_url, download=False) + logging.debug("Youtube info successfully extracted") + return info_dict + + +def get_playlist_videos(playlist_url): + ydl_opts = { + 'extract_flat': True, + 'skip_download': True, + 'quiet': True + } + + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + info = ydl.extract_info(playlist_url, download=False) + + if 'entries' in info: + video_urls = [entry['url'] for entry in info['entries']] + playlist_title = info['title'] + return video_urls, playlist_title else: - summary = "Unsupported API." + print("No videos found in the playlist.") + return [], None + + +def save_to_file(video_urls, filename): + with open(filename, 'w') as file: + file.write('\n'.join(video_urls)) + print(f"Video URLs saved to {filename}") + + +def download_video(video_url, download_path, info_dict, download_video_flag): + logging.debug("About to normalize downloaded video title") + title = normalize_title(info_dict['title']) + + if not download_video_flag: + file_path = os.path.join(download_path, f"{title}.m4a") + ydl_opts = { + 'format': 'bestaudio[ext=m4a]', + 'outtmpl': file_path, + } + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + logging.debug("yt_dlp: About to download audio with youtube-dl") + ydl.download([video_url]) + logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") + return file_path else: - summary = "No API provided for summarization." + video_file_path = os.path.join(download_path, f"{title}_video.mp4") + audio_file_path = os.path.join(download_path, f"{title}_audio.m4a") + ydl_opts_video = { + 'format': 'bestvideo[ext=mp4]', + 'outtmpl': video_file_path, + } + ydl_opts_audio = { + 'format': 'bestaudio[ext=m4a]', + 'outtmpl': audio_file_path, + } - # Ingest the unstructured text into the database - ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date, - custom_prompt) - return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}" + with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: + logging.debug("yt_dlp: About to download video with youtube-dl") + ydl.download([video_url]) + logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") + + with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl: + logging.debug("yt_dlp: About to download audio with youtube-dl") + ydl.download([video_url]) + logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") + + output_file_path = os.path.join(download_path, f"{title}.mp4") + + if sys.platform.startswith('win'): + logging.debug("Running ffmpeg on Windows...") + ffmpeg_command = [ + '.\\Bin\\ffmpeg.exe', + '-i', video_file_path, + '-i', audio_file_path, + '-c:v', 'copy', + '-c:a', 'copy', + output_file_path + ] + subprocess.run(ffmpeg_command, check=True) + elif userOS == "Linux": + logging.debug("Running ffmpeg on Linux...") + ffmpeg_command = [ + 'ffmpeg', + '-i', video_file_path, + '-i', audio_file_path, + '-c:v', 'copy', + '-c:a', 'copy', + output_file_path + ] + subprocess.run(ffmpeg_command, check=True) + else: + logging.error("ffmpeg: Unsupported operating system for video download and merging.") + raise RuntimeError("ffmpeg: Unsupported operating system for video download and merging.") + os.remove(video_file_path) + os.remove(audio_file_path) + return output_file_path -# -# -####################################################################################################################### -# -# -####################################################################################################################### +def read_paths_from_file(file_path: str) -> List[str]: + """Read paths from a text file.""" + with open(file_path, 'r') as file: + paths = file.readlines() + return [path.strip() for path in paths] -####################################################################################################################### -# Video Download/Handling -# Video-DL-Ingestion-Lib -# -# Function List -# 1. get_video_info(url) -# 2. create_download_directory(title) -# 3. sanitize_filename(title) -# 4. normalize_title(title) -# 5. get_youtube(video_url) -# 6. get_playlist_videos(playlist_url) -# 7. download_video(video_url, download_path, info_dict, download_video_flag) -# 8. save_to_file(video_urls, filename) -# 9. save_summary_to_file(summary, file_path) -# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE -# -# -####################################################################################################################### +def save_summary_to_file(summary: str, file_path: str): + """Save summary to a JSON file.""" + summary_data = {'summary': summary, 'generated_at': datetime.now().isoformat()} + with open(file_path, 'w') as file: + json.dump(summary_data, file, indent=4) -####################################################################################################################### -# Audio Transcription -# -# Function List -# 1. convert_to_wav(video_file_path, offset=0, overwrite=False) -# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False) +def extract_text_from_segments(segments: List[Dict]) -> str: + """Extract text from segments.""" + return " ".join([segment['text'] for segment in segments]) -# Audio_Transcription_Lib.py -######################################### -# Transcription Library -# This library is used to perform transcription of audio files. -# Currently, uses faster_whisper for transcription. # -#### -import configparser -#################### -# Function List # -# 1. convert_to_wav(video_file_path, offset=0, overwrite=False) -# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False) -# -#################### - +####################################################################################################################### -# Import necessary libraries to run solo for testing -import json -import logging -import os -import sys -import subprocess -import time -# Import Local ####################################################################################################################### -# Function Definitions +# Audio Transcription # - # Convert video .m4a into .wav using ffmpeg # ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav" # https://www.gyan.dev/ffmpeg/builds/ @@ -775,8 +886,8 @@ def convert_to_wav(video_file_path, offset=0, overwrite=False): logging.error("Error executing FFmpeg command: %s", str(e)) raise RuntimeError("Error converting video file to WAV") except Exception as e: - logging.error("speech-to-text: Error transcribing audio: %s", str(e)) - return {"error": str(e)} + logging.error("Unexpected error occurred: %s", str(e)) + raise RuntimeError("Error converting video file to WAV") return out_path @@ -784,10 +895,6 @@ def convert_to_wav(video_file_path, offset=0, overwrite=False): def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False): logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model) from faster_whisper import WhisperModel - # Retrieve processing choice from the configuration file - config = configparser.ConfigParser() - config.read('config.txt') - processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') model = WhisperModel(whisper_model, device=f"{processing_choice}") time_start = time.time() if audio_file_path is None: @@ -813,9 +920,9 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm segments = [] for segment_chunk in segments_raw: chunk = { - "Time_Start": segment_chunk.start, - "Time_End": segment_chunk.end, - "Text": segment_chunk.text + "start": segment_chunk.start, + "end": segment_chunk.end, + "text": segment_chunk.text } logging.debug("Segment: %s", chunk) segments.append(chunk) @@ -835,119 +942,6 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm return segments - -# -# -####################################################################################################################### -# Chunk Lib -# -# - -# from transformers import GPT2Tokenizer -# import nltk -# import re - - -# -# # FIXME - Make sure it only downloads if it already exists, and does a check first. -# # Ensure NLTK data is downloaded -# def ntlk_prep(): -# nltk.download('punkt') -# -# # Load GPT2 tokenizer -# tokenizer = GPT2Tokenizer.from_pretrained("gpt2") -# -# -# def load_document(file_path): -# with open(file_path, 'r') as file: -# text = file.read() -# return re.sub('\s+', ' ', text).strip() -# -# -# # Chunk based on maximum number of words, using ' ' (space) as a delimiter -# def chunk_text_by_words(text, max_words=300): -# words = text.split() -# chunks = [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)] -# return chunks -# -# -# # Chunk based on sentences, not exceeding a max amount, using nltk -# def chunk_text_by_sentences(text, max_sentences=10): -# sentences = nltk.tokenize.sent_tokenize(text) -# chunks = [' '.join(sentences[i:i + max_sentences]) for i in range(0, len(sentences), max_sentences)] -# return chunks -# -# -# # Chunk text by paragraph, marking paragraphs by (delimiter) '\n\n' -# def chunk_text_by_paragraphs(text, max_paragraphs=5): -# paragraphs = text.split('\n\n') -# chunks = ['\n\n'.join(paragraphs[i:i + max_paragraphs]) for i in range(0, len(paragraphs), max_paragraphs)] -# return chunks -# -# -# # Naive chunking based on token count -# def chunk_text_by_tokens(text, max_tokens=1000): -# tokens = tokenizer.encode(text) -# chunks = [tokenizer.decode(tokens[i:i + max_tokens]) for i in range(0, len(tokens), max_tokens)] -# return chunks -# -# -# # Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number -# def chunk_text_hybrid(text, max_tokens=1000): -# sentences = nltk.tokenize.sent_tokenize(text) -# chunks = [] -# current_chunk = [] -# current_length = 0 -# -# for sentence in sentences: -# tokens = tokenizer.encode(sentence) -# if current_length + len(tokens) <= max_tokens: -# current_chunk.append(sentence) -# current_length += len(tokens) -# else: -# chunks.append(' '.join(current_chunk)) -# current_chunk = [sentence] -# current_length = len(tokens) -# -# if current_chunk: -# chunks.append(' '.join(current_chunk)) -# -# return chunks - - -# Sample text for testing -sample_text = """ -Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence -concerned with the interactions between computers and human language, in particular how to program computers -to process and analyze large amounts of natural language data. The result is a computer capable of "understanding" -the contents of documents, including the contextual nuances of the language within them. The technology can then -accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves. - -Challenges in natural language processing frequently involve speech recognition, natural language understanding, -and natural language generation. - -Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled -"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence. -""" - -# Example usage of different chunking methods -# print("Chunking by words:") -# print(chunk_text_by_words(sample_text, max_words=50)) -# -# print("\nChunking by sentences:") -# print(chunk_text_by_sentences(sample_text, max_sentences=2)) -# -# print("\nChunking by paragraphs:") -# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1)) -# -# print("\nChunking by tokens:") -# print(chunk_text_by_tokens(sample_text, max_tokens=50)) -# -# print("\nHybrid chunking:") -# print(chunk_text_hybrid(sample_text, max_tokens=50)) - - - # # ####################################################################################################################### @@ -956,2559 +950,1178 @@ Natural language processing has its roots in the 1950s. Already in 1950, Alan Tu ####################################################################################################################### # Diarization # -# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", -# embedding_size=512, num_speakers=0) - -# Local_File_Processing_Lib.py -######################################### -# Local File Processing and File Path Handling Library -# This library is used to handle processing local filepaths and URLs. -# It checks for the OS, the availability of the GPU, and the availability of the ffmpeg executable. -# If the GPU is available, it asks the user if they would like to use it for processing. -# If ffmpeg is not found, it asks the user if they would like to download it. -# The script will exit if the user chooses not to download ffmpeg. -#### - -#################### -# Function List +# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1 +# embedding_model = "pyannote/embedding", embedding_size=512 +# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192 +# def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0): +# """ +# 1. Generating speaker embeddings for each segments. +# 2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. +# """ +# try: +# from pyannote.audio import Audio +# from pyannote.core import Segment +# from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding +# import numpy as np +# import pandas as pd +# from sklearn.cluster import AgglomerativeClustering +# from sklearn.metrics import silhouette_score +# import tqdm +# import wave +# +# embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) +# +# +# _,file_ending = os.path.splitext(f'{video_file_path}') +# audio_file = video_file_path.replace(file_ending, ".wav") +# out_file = video_file_path.replace(file_ending, ".diarize.json") +# +# logging.debug("getting duration of audio file") +# with contextlib.closing(wave.open(audio_file,'r')) as f: +# frames = f.getnframes() +# rate = f.getframerate() +# duration = frames / float(rate) +# logging.debug("duration of audio file obtained") +# print(f"duration of audio file: {duration}") +# +# def segment_embedding(segment): +# logging.debug("Creating embedding") +# audio = Audio() +# start = segment["start"] +# end = segment["end"] +# +# # Enforcing a minimum segment length +# if end-start < 0.3: +# padding = 0.3-(end-start) +# start -= padding/2 +# end += padding/2 +# print('Padded segment because it was too short:',segment) +# +# # Whisper overshoots the end timestamp in the last segment +# end = min(duration, end) +# # clip audio and embed +# clip = Segment(start, end) +# waveform, sample_rate = audio.crop(audio_file, clip) +# return embedding_model(waveform[None]) +# +# embeddings = np.zeros(shape=(len(segments), embedding_size)) +# for i, segment in enumerate(tqdm.tqdm(segments)): +# embeddings[i] = segment_embedding(segment) +# embeddings = np.nan_to_num(embeddings) +# print(f'Embedding shape: {embeddings.shape}') +# +# if num_speakers == 0: +# # Find the best number of speakers +# score_num_speakers = {} +# +# for num_speakers in range(2, 10+1): +# clustering = AgglomerativeClustering(num_speakers).fit(embeddings) +# score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') +# score_num_speakers[num_speakers] = score +# best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) +# print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") +# else: +# best_num_speaker = num_speakers +# +# # Assign speaker label +# clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) +# labels = clustering.labels_ +# for i in range(len(segments)): +# segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) +# +# with open(out_file,'w') as f: +# f.write(json.dumps(segments, indent=2)) +# +# # Make CSV output +# def convert_time(secs): +# return datetime.timedelta(seconds=round(secs)) +# +# objects = { +# 'Start' : [], +# 'End': [], +# 'Speaker': [], +# 'Text': [] +# } +# text = '' +# for (i, segment) in enumerate(segments): +# if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: +# objects['Start'].append(str(convert_time(segment["start"]))) +# objects['Speaker'].append(segment["speaker"]) +# if i != 0: +# objects['End'].append(str(convert_time(segments[i - 1]["end"]))) +# objects['Text'].append(text) +# text = '' +# text += segment["text"] + ' ' +# objects['End'].append(str(convert_time(segments[i - 1]["end"]))) +# objects['Text'].append(text) +# +# save_path = video_file_path.replace(file_ending, ".csv") +# df_results = pd.DataFrame(objects) +# df_results.to_csv(save_path) +# return df_results, save_path +# +# except Exception as e: +# raise RuntimeError("Error Running inference with local model", e) # -# 1. read_paths_from_file(file_path) -# 2. process_path(path) -# 3. process_local_file(file_path) -# 4. read_paths_from_file(file_path: str) -> List[str] # -#################### - -# Import necessary libraries -import os -import logging +####################################################################################################################### -# Local_LLM_Inference_Engine_Lib.py -######################################### -# Local LLM Inference Engine Library -# This library is used to handle downloading, configuring, and launching the Local LLM Inference Engine -# via (llama.cpp via llamafile) -# -# -#### -import atexit -import hashlib -#################### -# Function List +####################################################################################################################### +# Chunking-related Techniques & Functions # -# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) -# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) -# 3. verify_checksum(file_path, expected_checksum) -# 4. cleanup_process() -# 5. signal_handler(sig, frame) -# 6. local_llm_function() -# 7. launch_in_new_terminal_windows(executable, args) -# 8. launch_in_new_terminal_linux(executable, args) -# 9. launch_in_new_terminal_mac(executable, args) # -#################### - -# Import necessary libraries -import json -import logging -from multiprocessing import Process as MpProcess -import requests -import sys -import os -# Import 3rd-pary Libraries -import gradio as gr -from tqdm import tqdm - +######### Words-per-second Chunking ######### +def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: + words = transcript.split() + words_per_chunk = chunk_duration * words_per_second + chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] + return chunks -# Local_Summarization_Lib.py -######################################### -# Local Summarization Library -# This library is used to perform summarization with a 'local' inference engine. -# -#### -#################### -# Function List -# -# 1. summarize_with_local_llm(file_path, custom_prompt_arg) -# 2. summarize_with_llama(api_url, file_path, token, custom_prompt) -# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt) -# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt) -# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) -# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) -# 7. save_summary_to_file(summary, file_path) -# -# -#################### +def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, + words_per_second: int) -> str: + if api_name not in summarizers: # See 'summarizers' dict in the main script + return f"Unsupported API: {api_name}" + summarizer = summarizers[api_name] + text = extract_text_from_segments(transcript) + chunks = chunk_transcript(text, chunk_duration, words_per_second) -# Import necessary libraries -import os -import logging -from typing import Callable + summaries = [] + for chunk in chunks: + if api_name == 'openai': + # Ensure the correct model and prompt are passed + summaries.append(summarizer(api_key, chunk, custom_prompt)) + else: + summaries.append(summarizer(api_key, chunk)) + return "\n\n".join(summaries) -# Old_Chunking_Lib.py -######################################### -# Old Chunking Library -# This library is used to handle chunking of text for summarization. -# -#### +################## #################### +######### Token-size Chunking ######### FIXME - OpenAI only currently +# This is dirty and shameful and terrible. It should be replaced with a proper implementation. +# anyways lets get to it.... -#################### -# Function List -# -# 1. chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str] -# 2. summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, words_per_second: int) -> str -# 3. get_chat_completion(messages, model='gpt-4-turbo') -# 4. chunk_on_delimiter(input_string: str, max_tokens: int, delimiter: str) -> List[str] -# 5. combine_chunks_with_no_minimum(chunks: List[str], max_tokens: int, chunk_delimiter="\n\n", header: Optional[str] = None, add_ellipsis_for_overflow=False) -> Tuple[List[str], List[int]] -# 6. rolling_summarize(text: str, detail: float = 0, model: str = 'gpt-4-turbo', additional_instructions: Optional[str] = None, minimum_chunk_size: Optional[int] = 500, chunk_delimiter: str = ".", summarize_recursively=False, verbose=False) -# 7. chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str] -# 8. summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, words_per_second: int) -> str -# -#################### -# Import necessary libraries -import os -from typing import Optional +def get_chat_completion(messages, model='gpt-4-turbo'): + response = client.chat.completions.create( + model=model, + messages=messages, + temperature=0, + ) + return response.choices[0].message.content -# Import 3rd party -import openai -from openai import OpenAI +# This function chunks a text into smaller pieces based on a maximum token count and a delimiter +def chunk_on_delimiter(input_string: str, + max_tokens: int, + delimiter: str) -> List[str]: + chunks = input_string.split(delimiter) + combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum( + chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True) + if dropped_chunk_count > 0: + print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.") + combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks] + return combined_chunks -import csv -import logging -import os -import re -import sqlite3 -import time -from contextlib import contextmanager -from datetime import datetime -from typing import List, Tuple +# This function combines text chunks into larger blocks without exceeding a specified token count. +# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow. +def combine_chunks_with_no_minimum( + chunks: List[str], + max_tokens: int, + chunk_delimiter="\n\n", + header: Optional[str] = None, + add_ellipsis_for_overflow=False, +) -> Tuple[List[str], List[int]]: + dropped_chunk_count = 0 + output = [] # list to hold the final combined chunks + output_indices = [] # list to hold the indices of the final combined chunks + candidate = ( + [] if header is None else [header] + ) # list to hold the current combined chunk candidate + candidate_indices = [] + for chunk_i, chunk in enumerate(chunks): + chunk_with_header = [chunk] if header is None else [header, chunk] + # FIXME MAKE NOT OPENAI SPECIFIC + if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens: + print(f"warning: chunk overflow") + if ( + add_ellipsis_for_overflow + # FIXME MAKE NOT OPENAI SPECIFIC + and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens + ): + candidate.append("...") + dropped_chunk_count += 1 + continue # this case would break downstream assumptions + # estimate token count with the current chunk added + # FIXME MAKE NOT OPENAI SPECIFIC + extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk]))) + # If the token count exceeds max_tokens, add the current candidate to output and start a new candidate + if extended_candidate_token_count > max_tokens: + output.append(chunk_delimiter.join(candidate)) + output_indices.append(candidate_indices) + candidate = chunk_with_header # re-initialize candidate + candidate_indices = [chunk_i] + # otherwise keep extending the candidate + else: + candidate.append(chunk) + candidate_indices.append(chunk_i) + # add the remaining candidate to output if it's not empty + if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0): + output.append(chunk_delimiter.join(candidate)) + output_indices.append(candidate_indices) + return output, output_indices, dropped_chunk_count -import gradio as gr -import pandas as pd -# Import Local +def rolling_summarize(text: str, + detail: float = 0, + model: str = 'gpt-4-turbo', + additional_instructions: Optional[str] = None, + minimum_chunk_size: Optional[int] = 500, + chunk_delimiter: str = ".", + summarize_recursively=False, + verbose=False): + """ + Summarizes a given text by splitting it into chunks, each of which is summarized individually. + The level of detail in the summary can be adjusted, and the process can optionally be made recursive. + Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1 + indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more + detailed summary. Defaults to 0. - model (str, optional): The model to use for generating summaries. Defaults to + 'gpt-3.5-turbo'. - additional_instructions (Optional[str], optional): Additional instructions to provide to the + model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text + chunks. Defaults to 500. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. + Defaults to ".". - summarize_recursively (bool, optional): If True, summaries are generated recursively, + using previous summaries for context. - verbose (bool, optional): If True, prints detailed information about the + chunking process. + Returns: + - str: The final compiled summary of the text. + The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count + based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If + `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the + summarization process. The function returns a compiled summary of all chunks. + """ + # check detail is set correctly + assert 0 <= detail <= 1 -# Summarization_General_Lib.py -######################################### -# General Summarization Library -# This library is used to perform summarization. -# -#### -import configparser -#################### -# Function List -# -# 1. extract_text_from_segments(segments: List[Dict]) -> str -# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) -# 3. summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) -# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) -# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) -# -# -#################### + # interpolate the number of chunks based to get specified level of detail + max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter)) + min_chunks = 1 + num_chunks = int(min_chunks + detail * (max_chunks - min_chunks)) + # adjust chunk_size based on interpolated number of chunks + # FIXME MAKE NOT OPENAI SPECIFIC + document_length = len(openai_tokenize(text)) + chunk_size = max(minimum_chunk_size, document_length // num_chunks) + text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter) + if verbose: + print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.") + # FIXME MAKE NOT OPENAI SPECIFIC + print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}") -# Import necessary libraries -import os -import logging -import time -import requests -from typing import List, Dict -import json -import configparser -from requests import RequestException + # set system message + system_message_content = "Rewrite this text in summarized form." + if additional_instructions is not None: + system_message_content += f"\n\n{additional_instructions}" + accumulated_summaries = [] + for chunk in tqdm(text_chunks): + if summarize_recursively and accumulated_summaries: + # Creating a structured prompt for recursive summarization + accumulated_summaries_string = '\n\n'.join(accumulated_summaries) + user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}" + else: + # Directly passing the chunk for summarization without recursive context + user_message_content = chunk + # Constructing messages based on whether recursive summarization is applied + messages = [ + {"role": "system", "content": system_message_content}, + {"role": "user", "content": user_message_content} + ] + # Assuming this function gets the completion and works as expected + response = get_chat_completion(messages, model=model) + accumulated_summaries.append(response) -# System_Checks_Lib.py -######################################### -# System Checks Library -# This library is used to check the system for the necessary dependencies to run the script. -# It checks for the OS, the availability of the GPU, and the availability of the ffmpeg executable. -# If the GPU is available, it asks the user if they would like to use it for processing. -# If ffmpeg is not found, it asks the user if they would like to download it. -# The script will exit if the user chooses not to download ffmpeg. -#### + # Compile final summary from partial summaries + global final_summary + final_summary = '\n\n'.join(accumulated_summaries) -#################### -# Function List -# -# 1. platform_check() -# 2. cuda_check() -# 3. decide_cpugpu() -# 4. check_ffmpeg() -# 5. download_ffmpeg() -# -#################### + return final_summary +####################################### -# Import necessary libraries -import os -import platform -import subprocess -import shutil -import zipfile -import logging +######### Words-per-second Chunking ######### +# FIXME - WHole section needs to be re-written +def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: + words = transcript.split() + words_per_chunk = chunk_duration * words_per_second + chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] + return chunks + +def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, + words_per_second: int) -> str: + if api_name not in summarizers: # See 'summarizers' dict in the main script + return f"Unsupported API: {api_name}" + if not transcript: + logging.error("Empty or None transcript provided to summarize_chunks") + return "Error: Empty or None transcript provided" + text = extract_text_from_segments(transcript) + chunks = chunk_transcript(text, chunk_duration, words_per_second) + custom_prompt = args.custom_prompt + + summaries = [] + for chunk in chunks: + if api_name == 'openai': + # Ensure the correct model and prompt are passed + summaries.append(summarize_with_openai(api_key, chunk, custom_prompt)) + elif api_name == 'anthropic': + summaries.append(summarize_with_cohere(api_key, chunk, anthropic_model, custom_prompt)) + elif api_name == 'cohere': + summaries.append(summarize_with_claude(api_key, chunk, cohere_model, custom_prompt)) + elif api_name == 'groq': + summaries.append(summarize_with_groq(api_key, chunk, groq_model, custom_prompt)) + elif api_name == 'llama': + summaries.append(summarize_with_llama(llama_api_IP, chunk, api_key, custom_prompt)) + elif api_name == 'kobold': + summaries.append(summarize_with_kobold(kobold_api_IP, chunk, api_key, custom_prompt)) + elif api_name == 'ooba': + summaries.append(summarize_with_oobabooga(ooba_api_IP, chunk, api_key, custom_prompt)) + elif api_name == 'tabbyapi': + summaries.append(summarize_with_vllm(api_key, tabby_api_IP, chunk, llm_model, custom_prompt)) + elif api_name == 'local-llm': + summaries.append(summarize_with_local_llm(chunk, custom_prompt)) + else: + return f"Unsupported API: {api_name}" + return "\n\n".join(summaries) -# Video_DL_Ingestion_Lib.py -######################################### -# Video Downloader and Ingestion Library -# This library is used to handle downloading videos from YouTube and other platforms. -# It also handles the ingestion of the videos into the database. -# It uses yt-dlp to extract video information and download the videos. -#### -#################### -# Function List +####################################### + # -# 1. get_video_info(url) -# 2. create_download_directory(title) -# 3. sanitize_filename(title) -# 4. normalize_title(title) -# 5. get_youtube(video_url) -# 6. get_playlist_videos(playlist_url) -# 7. download_video(video_url, download_path, info_dict, download_video_flag) -# 8. save_to_file(video_urls, filename) -# 9. save_summary_to_file(summary, file_path) -# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, chunk_summarization, chunk_duration_input, words_per_second_input) +# +####################################################################################################################### + + +####################################################################################################################### +# Tokenization-related Techniques & Functions # # -#################### + +def openai_tokenize(text: str) -> List[str]: + encoding = tiktoken.encoding_for_model('gpt-4-turbo') + return encoding.encode(text) -# Import necessary libraries to run solo for testing -from datetime import datetime -import json -import logging -import os -import re -import subprocess -import sys -import unicodedata -# 3rd-Party Imports -import yt_dlp +# openai summarize chunks -server_mode = False -share_public = False +# +# +####################################################################################################################### ####################################################################################################################### -# Function Definitions +# Website-related Techniques & Functions +# # -def get_video_info(url: str) -> dict: - ydl_opts = { - 'quiet': True, - 'no_warnings': True, - 'skip_download': True, - } - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - try: - info_dict = ydl.extract_info(url, download=False) - return info_dict - except Exception as e: - logging.error(f"Error extracting video info: {e}") +def scrape_article(url): + async def fetch_html(url: str) -> str: + async with async_playwright() as p: + browser = await p.chromium.launch(headless=True) + context = await browser.new_context( + user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3") + page = await context.new_page() + await page.goto(url) + await page.wait_for_load_state("networkidle") # Wait for the network to be idle + content = await page.content() + await browser.close() + return content + + def extract_article_data(html: str) -> dict: + downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) + if downloaded: + metadata = trafilatura.extract_metadata(html) + if metadata: + return { + 'title': metadata.title if metadata.title else 'N/A', + 'author': metadata.author if metadata.author else 'N/A', + 'content': downloaded, + 'date': metadata.date if metadata.date else 'N/A', + } + else: + print("Metadata extraction failed.") + return None + else: + print("Content extraction failed.") return None + def convert_html_to_markdown(html: str) -> str: + soup = BeautifulSoup(html, 'html.parser') + # Convert each paragraph to markdown + for para in soup.find_all('p'): + para.append('\n') # Add a newline at the end of each paragraph for markdown separation -def create_download_directory(title): - base_dir = "Results" - # Remove characters that are illegal in Windows filenames and normalize - safe_title = normalize_title(title) - logging.debug(f"{title} successfully normalized") - session_path = os.path.join(base_dir, safe_title) - if not os.path.exists(session_path): - os.makedirs(session_path, exist_ok=True) - logging.debug(f"Created directory for downloaded video: {session_path}") - else: - logging.debug(f"Directory already exists for downloaded video: {session_path}") - return session_path + # Use .get_text() with separator to keep paragraph separation + text = soup.get_text(separator='\n\n') + return text -def sanitize_filename(title, max_length=255): - # Remove invalid path characters - title = re.sub(r'[\\/*?:"<>|]', "", title) - # Truncate long titles to avoid filesystem errors - return title[:max_length].rstrip() + async def fetch_and_extract_article(url: str): + html = await fetch_html(url) + print("HTML Content:", html[:500]) # Print first 500 characters of the HTML for inspection + article_data = extract_article_data(html) + if article_data: + article_data['content'] = convert_html_to_markdown(article_data['content']) + return article_data + else: + return None - -def normalize_title(title): - # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters - title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') - title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', - '').replace( - '<', '').replace('>', '').replace('|', '') - return title + # Using asyncio.run to handle event loop creation and execution + article_data = asyncio.run(fetch_and_extract_article(url)) + return article_data -def get_youtube(video_url): - ydl_opts = { - 'format': 'bestaudio[ext=m4a]', - 'noplaylist': False, - 'quiet': True, - 'extract_flat': True - } - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - logging.debug("About to extract youtube info") - info_dict = ydl.extract_info(video_url, download=False) - logging.debug("Youtube info successfully extracted") - return info_dict +def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt): + try: + # Check if content is not empty or whitespace + if not content.strip(): + raise ValueError("Content is empty.") + db = Database() + create_tables() + keyword_list = keywords.split(',') if keywords else ["default"] + keyword_str = ', '.join(keyword_list) -def get_playlist_videos(playlist_url): - ydl_opts = { - 'extract_flat': True, - 'skip_download': True, - 'quiet': True - } + # Set default values for missing fields + url = url or 'Unknown' + title = title or 'Unknown' + author = author or 'Unknown' + keywords = keywords or 'default' + summary = summary or 'No summary available' + ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d') - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - info = ydl.extract_info(playlist_url, download=False) + # Log the values of all fields before calling add_media_with_keywords + logging.debug(f"URL: {url}") + logging.debug(f"Title: {title}") + logging.debug(f"Author: {author}") + logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content + logging.debug(f"Keywords: {keywords}") + logging.debug(f"Summary: {summary}") + logging.debug(f"Ingestion Date: {ingestion_date}") + logging.debug(f"Custom Prompt: {custom_prompt}") - if 'entries' in info: - video_urls = [entry['url'] for entry in info['entries']] - playlist_title = info['title'] - return video_urls, playlist_title - else: - print("No videos found in the playlist.") - return [], None + # Check if any required field is empty and log the specific missing field + if not url: + logging.error("URL is missing.") + raise ValueError("URL is missing.") + if not title: + logging.error("Title is missing.") + raise ValueError("Title is missing.") + if not content: + logging.error("Content is missing.") + raise ValueError("Content is missing.") + if not keywords: + logging.error("Keywords are missing.") + raise ValueError("Keywords are missing.") + if not summary: + logging.error("Summary is missing.") + raise ValueError("Summary is missing.") + if not ingestion_date: + logging.error("Ingestion date is missing.") + raise ValueError("Ingestion date is missing.") + if not custom_prompt: + logging.error("Custom prompt is missing.") + raise ValueError("Custom prompt is missing.") + # Add media with keywords to the database + result = add_media_with_keywords( + url=url, + title=title, + media_type='article', + content=content, + keywords=keyword_str or "article_default", + prompt=custom_prompt or None, + summary=summary or "No summary generated", + transcription_model=None, # or some default value if applicable + author=author or 'Unknown', + ingestion_date=ingestion_date + ) + return result + except Exception as e: + logging.error(f"Failed to ingest article to the database: {e}") + return str(e) -def download_video(video_url, download_path, info_dict, download_video_flag): - global video_file_path, ffmpeg_path - global audio_file_path - # Normalize Video Title name - logging.debug("About to normalize downloaded video title") - normalized_video_title = normalize_title(info_dict['title']) - video_file_path = os.path.join(download_path, f"{normalized_video_title}.{info_dict['ext']}") - - # Check for existence of video file - if os.path.exists(video_file_path): - logging.info(f"Video file already exists: {video_file_path}") - return video_file_path - - # Setup path handling for ffmpeg on different OSs - if sys.platform.startswith('win'): - ffmpeg_path = os.path.join(os.getcwd(), 'Bin', 'ffmpeg.exe') - elif sys.platform.startswith('linux'): - ffmpeg_path = 'ffmpeg' - elif sys.platform.startswith('darwin'): - ffmpeg_path = 'ffmpeg' - - download_video_flag = True - if download_video_flag: - video_file_path = os.path.join(download_path, f"{normalized_video_title}.mp4") - - # Dirty hack until I figure out whats going on.... FIXME - download_video_flag = True - # Set options for video and audio - ydl_opts_video = { - 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]', - 'outtmpl': video_file_path, - 'ffmpeg_location': ffmpeg_path - } +def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title): + # Step 1: Scrape the article + article_data = scrape_article(url) + print(f"Scraped Article Data: {article_data}") # Debugging statement + if not article_data: + return "Failed to scrape the article." - retry_attempts = 3 - for attempt in range(retry_attempts): - try: - with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: - logging.debug("yt_dlp: About to download video with youtube-dl") - ydl.download([video_url]) - logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") - if os.path.exists(video_file_path): - return video_file_path - else: - logging.error("yt_dlp: Video file not found after download") - return None - except Exception as e: - logging.error(f"yt_dlp: Error downloading video: {e}") - if attempt < retry_attempts - 1: - logging.info(f"Retrying download... (Attempt {attempt + 1}/{retry_attempts})") - time.sleep(2) # Wait a bit before retrying - else: - logging.error("yt_dlp: Failed to download video after multiple attempts") - return None - else: - logging.debug("Download video flag is set to False") - return None + # Use the custom title if provided, otherwise use the scraped title + title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') + author = article_data.get('author', 'Unknown') + content = article_data.get('content', '') + ingestion_date = datetime.now().strftime('%Y-%m-%d') + print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement -def save_to_file(video_urls, filename): - with open(filename, 'w') as file: - file.write('\n'.join(video_urls)) - print(f"Video URLs saved to {filename}") + # Custom prompt for the article + article_custom_prompt = custom_prompt_arg or "Summarize this article." -# -# -####################################################################################################################### + # Step 2: Summarize the article + summary = None + if api_name: + logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}") + # Sanitize filename for saving the JSON file + sanitized_title = sanitize_filename(title) + json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json") + with open(json_file_path, 'w') as json_file: + json.dump([{'text': content}], json_file, indent=2) -# + try: + if api_name.lower() == 'openai': + openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) + logging.debug(f"Article_Summarizer: trying to summarize with openAI") + summary = summarize_with_openai(openai_api_key, json_file_path, article_custom_prompt) + elif api_name.lower() == "anthropic": + anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', fallback=None) + logging.debug(f"Article_Summarizer: Trying to summarize with anthropic") + summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model, + custom_prompt_arg=article_custom_prompt) + elif api_name.lower() == "cohere": + cohere_api_key = api_key if api_key else config.get('API', 'cohere_api_key', fallback=None) + logging.debug(f"Article_Summarizer: Trying to summarize with cohere") + summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, + custom_prompt_arg=article_custom_prompt) + elif api_name.lower() == "groq": + groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None) + logging.debug(f"Article_Summarizer: Trying to summarize with Groq") + summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, + custom_prompt_arg=article_custom_prompt) + elif api_name.lower() == "llama": + llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) + llama_ip = llama_api_IP + logging.debug(f"Article_Summarizer: Trying to summarize with Llama.cpp") + summary = summarize_with_llama(llama_ip, json_file_path, llama_token, article_custom_prompt) + elif api_name.lower() == "kobold": + kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None) + kobold_ip = kobold_api_IP + logging.debug(f"Article_Summarizer: Trying to summarize with kobold.cpp") + summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, article_custom_prompt) + elif api_name.lower() == "ooba": + ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None) + ooba_ip = ooba_api_IP + logging.debug(f"Article_Summarizer: Trying to summarize with oobabooga") + summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, article_custom_prompt) + elif api_name.lower() == "tabbyapi": + tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None) + tabbyapi_ip = tabby_api_IP + logging.debug(f"Article_Summarizer: Trying to summarize with tabbyapi") + tabby_model = llm_model + summary = summarize_with_tabbyapi(tabbyapi_key, tabbyapi_ip, json_file_path, tabby_model, + article_custom_prompt) + elif api_name.lower() == "vllm": + logging.debug(f"Article_Summarizer: Trying to summarize with VLLM") + summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path, + article_custom_prompt) + elif api_name.lower() == "huggingface": + huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', fallback=None) + logging.debug(f"Article_Summarizer: Trying to summarize with huggingface") + summary = summarize_with_huggingface(huggingface_api_key, json_file_path, article_custom_prompt) + except requests.exceptions.ConnectionError as e: + logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}") -def openai_tokenize(text: str) -> List[str]: - encoding = tiktoken.encoding_for_model('gpt-4-turbo') - return encoding.encode(text) + if summary: + logging.info(f"Article_Summarizer: Summary generated using {api_name} API") + save_summary_to_file(summary, json_file_path) + else: + summary = "Summary not available" + logging.warning(f"Failed to generate summary using {api_name} API") -def platform_check(): - global userOS - if platform.system() == "Linux": - print("Linux OS detected \n Running Linux appropriate commands") - userOS = "Linux" - elif platform.system() == "Windows": - print("Windows OS detected \n Running Windows appropriate commands") - userOS = "Windows" else: - print("Other OS detected \n Maybe try running things manually?") - exit() + summary = "Article Summarization: No API provided for summarization." + print(f"Summary: {summary}") # Debugging statement -# Check for NVIDIA GPU and CUDA availability -def cuda_check(): - global processing_choice - try: - # Run nvidia-smi to capture its output - nvidia_smi_output = subprocess.check_output("nvidia-smi", shell=True).decode() - - # Look for CUDA version in the output - if "CUDA Version" in nvidia_smi_output: - cuda_version = next( - (line.split(":")[-1].strip() for line in nvidia_smi_output.splitlines() if "CUDA Version" in line), - "Not found") - print(f"NVIDIA GPU with CUDA Version {cuda_version} is available.") - processing_choice = "cuda" - else: - print("CUDA is not installed or configured correctly.") - processing_choice = "cpu" + # Step 3: Ingest the article into the database + ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, + article_custom_prompt) - except subprocess.CalledProcessError as e: - print(f"Failed to run 'nvidia-smi': {str(e)}") - processing_choice = "cpu" - except Exception as e: - print(f"An error occurred: {str(e)}") - processing_choice = "cpu" + return f"Title: {title}\nAuthor: {author}\nSummary: {summary}\nIngestion Result: {ingestion_result}" - # Optionally, check for the CUDA_VISIBLE_DEVICES env variable as an additional check - if "CUDA_VISIBLE_DEVICES" in os.environ: - print("CUDA_VISIBLE_DEVICES is set:", os.environ["CUDA_VISIBLE_DEVICES"]) - else: - print("CUDA_VISIBLE_DEVICES not set.") +def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title): + title = custom_article_title.strip() if custom_article_title else "Unstructured Text" + author = "Unknown" + ingestion_date = datetime.now().strftime('%Y-%m-%d') + + # Summarize the unstructured text + if api_name: + json_file_path = f"Results/{title.replace(' ', '_')}_segments.json" + with open(json_file_path, 'w') as json_file: + json.dump([{'text': text}], json_file, indent=2) -# Ask user if they would like to use either their GPU or their CPU for transcription -def decide_cpugpu(): - global processing_choice - processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") - if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): - print("You've chosen to use the GPU.") - logging.debug("GPU is being used for processing") - processing_choice = "cuda" - elif processing_input.lower() == "cpu" or processing_input == "2": - print("You've chosen to use the CPU.") - logging.debug("CPU is being used for processing") - processing_choice = "cpu" + if api_name.lower() == 'openai': + summary = summarize_with_openai(api_key, json_file_path, custom_prompt) + # Add other APIs as needed + else: + summary = "Unsupported API." else: - print("Invalid choice. Please select either GPU or CPU.") + summary = "No API provided for summarization." + # Ingest the unstructured text into the database + ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date, + custom_prompt) + return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}" -# check for existence of ffmpeg -def check_ffmpeg(): - if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): - logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") - pass - else: - logging.debug("ffmpeg not installed on the local system/in local PATH") - print( - "ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of " - "choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") - if userOS == "Windows": - download_ffmpeg() - elif userOS == "Linux": - print( - "You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg'," - "'dnf install ffmpeg' or 'pacman', etc.") - else: - logging.debug("running an unsupported OS") - print("You're running an unspported/Un-tested OS") - exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") - if exit_script == "y" or "yes" or "1": - exit() - - -# Download ffmpeg -def download_ffmpeg(): - user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") - if user_choice.lower() in ['yes', 'y', '1']: - print("Downloading ffmpeg") - url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" - response = requests.get(url) - - if response.status_code == 200: - print("Saving ffmpeg zip file") - logging.debug("Saving ffmpeg zip file") - zip_path = "ffmpeg-release-essentials.zip" - with open(zip_path, 'wb') as file: - file.write(response.content) - - logging.debug("Extracting the 'ffmpeg.exe' file from the zip") - print("Extracting ffmpeg.exe from zip file to '/Bin' folder") - with zipfile.ZipFile(zip_path, 'r') as zip_ref: - # Find the ffmpeg.exe file within the zip - ffmpeg_path = None - for file_info in zip_ref.infolist(): - if file_info.filename.endswith("ffmpeg.exe"): - ffmpeg_path = file_info.filename - break - - if ffmpeg_path is None: - logging.error("ffmpeg.exe not found in the zip file.") - print("ffmpeg.exe not found in the zip file.") - return - - logging.debug("checking if the './Bin' folder exists, creating if not") - bin_folder = "Bin" - if not os.path.exists(bin_folder): - logging.debug("Creating a folder for './Bin', it didn't previously exist") - os.makedirs(bin_folder) - - logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") - zip_ref.extract(ffmpeg_path, path=bin_folder) - - logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") - src_path = os.path.join(bin_folder, ffmpeg_path) - dst_path = os.path.join(bin_folder, "ffmpeg.exe") - shutil.move(src_path, dst_path) - - logging.debug("Removing ffmpeg zip file") - print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") - os.remove(zip_path) - - logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") - print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") - else: - logging.error("Failed to download the zip file.") - print("Failed to download the zip file.") - else: - logging.debug("User chose to not download ffmpeg") - print("ffmpeg will not be downloaded.") - -# -# -####################################################################################################################### - - - -# Read configuration from file -config = configparser.ConfigParser() -config.read('../config.txt') - -# API Keys -anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None) -logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}") - -cohere_api_key = config.get('API', 'cohere_api_key', fallback=None) -logging.debug(f"Loaded cohere API Key: {cohere_api_key}") - -groq_api_key = config.get('API', 'groq_api_key', fallback=None) -logging.debug(f"Loaded groq API Key: {groq_api_key}") - -openai_api_key = config.get('API', 'openai_api_key', fallback=None) -logging.debug(f"Loaded openAI Face API Key: {openai_api_key}") - -huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) -logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}") - -openrouter_api_token = config.get('API', 'openrouter_api_token', fallback=None) -logging.debug(f"Loaded OpenRouter API Key: {openrouter_api_token}") - -# Models -anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') -cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') -groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192') -openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') -huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus') -openrouter_model = config.get('API', 'openrouter_model', fallback='mistralai/mistral-7b-instruct:free') - - -####################################################################################################################### -# Function Definitions -# - -# FIXME -# def extract_text_from_segments(segments: List[Dict]) -> str: -# """Extract text from segments.""" -# return " ".join([segment['text'] for segment in segments]) - - -def extract_text_from_segments(segments): - logging.debug(f"Segments received: {segments}") - logging.debug(f"Type of segments: {type(segments)}") - - text = "" - for segment in segments: - logging.debug(f"Current segment: {segment}") - logging.debug(f"Type of segment: {type(segment)}") - text += segment['Text'] + " " - return text.strip() - - -def summarize_with_openai(api_key, json_file_path, custom_prompt_arg): - try: - logging.debug("openai: Loading json data for summarization") - with open(json_file_path, 'r') as file: - data = json.load(file) - - logging.debug(f"openai: Loaded data: {data}") - logging.debug(f"openai: Type of data: {type(data)}") - - if isinstance(data, dict) and 'summary' in data: - # If the loaded data is a dictionary and already contains a summary, return it - logging.debug("openai: Summary already exists in the loaded data") - return data['summary'] - - # If the loaded data is a list of segment dictionaries, proceed with summarization - segments = data - - open_ai_model = openai_model or 'gpt-4-turbo' - - logging.debug("openai: Extracting text from the segments") - text = extract_text_from_segments(segments) - - headers = { - 'Authorization': f'Bearer {api_key}', - 'Content-Type': 'application/json' - } - - logging.debug(f"openai: API Key is: {api_key}") - logging.debug("openai: Preparing data + prompt for submittal") - openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - data = { - "model": open_ai_model, - "messages": [ - { - "role": "system", - "content": "You are a professional summarizer." - }, - { - "role": "user", - "content": openai_prompt - } - ], - "max_tokens": 8192, # Adjust tokens as needed - "temperature": 0.1 - } - logging.debug("openai: Posting request") - response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) - - if response.status_code == 200: - response_data = response.json() - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("openai: Summarization successful") - print("openai: Summarization successful.") - return summary - else: - logging.warning("openai: Summary not found in the response data") - return "openai: Summary not available" - else: - logging.debug("openai: Summarization failed") - print("openai: Failed to process summary:", response.text) - return "openai: Failed to process summary" - except Exception as e: - logging.debug("openai: Error in processing: %s", str(e)) - print("openai: Error occurred while processing summary with openai:", str(e)) - return "openai: Error occurred while processing summary" - - -def summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5): - try: - logging.debug("anthropic: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug("anthropic: Extracting text from the segments file") - text = extract_text_from_segments(segments) - - headers = { - 'x-api-key': api_key, - 'anthropic-version': '2023-06-01', - 'Content-Type': 'application/json' - } - - anthropic_prompt = custom_prompt_arg # Sanitize the custom prompt - logging.debug(f"anthropic: Prompt is {anthropic_prompt}") - user_message = { - "role": "user", - "content": f"{text} \n\n\n\n{anthropic_prompt}" - } - - data = { - "model": model, - "max_tokens": 4096, # max _possible_ tokens to return - "messages": [user_message], - "stop_sequences": ["\n\nHuman:"], - "temperature": 0.1, - "top_k": 0, - "top_p": 1.0, - "metadata": { - "user_id": "example_user_id", - }, - "stream": False, - "system": "You are a professional summarizer." - } - - for attempt in range(max_retries): - try: - logging.debug("anthropic: Posting request to API") - response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) - - # Check if the status code indicates success - if response.status_code == 200: - logging.debug("anthropic: Post submittal successful") - response_data = response.json() - try: - summary = response_data['content'][0]['text'].strip() - logging.debug("anthropic: Summarization successful") - print("Summary processed successfully.") - return summary - except (IndexError, KeyError) as e: - logging.debug("anthropic: Unexpected data in response") - print("Unexpected response format from Claude API:", response.text) - return None - elif response.status_code == 500: # Handle internal server error specifically - logging.debug("anthropic: Internal server error") - print("Internal server error from API. Retrying may be necessary.") - time.sleep(retry_delay) - else: - logging.debug( - f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") - print(f"Failed to process summary, status code {response.status_code}: {response.text}") - return None - - except RequestException as e: - logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") - if attempt < max_retries - 1: - time.sleep(retry_delay) - else: - return f"anthropic: Network error: {str(e)}" - - except FileNotFoundError as e: - logging.error(f"anthropic: File not found: {file_path}") - return f"anthropic: File not found: {file_path}" - except json.JSONDecodeError as e: - logging.error(f"anthropic: Invalid JSON format in file: {file_path}") - return f"anthropic: Invalid JSON format in file: {file_path}" - except Exception as e: - logging.error(f"anthropic: Error in processing: {str(e)}") - return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" - - -# Summarize with Cohere -def summarize_with_cohere(api_key, file_path, model, custom_prompt_arg): - try: - logging.debug("cohere: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"cohere: Extracting text from segments file") - text = extract_text_from_segments(segments) - - headers = { - 'accept': 'application/json', - 'content-type': 'application/json', - 'Authorization': f'Bearer {api_key}' - } - - cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - logging.debug("cohere: Prompt being sent is {cohere_prompt}") - - data = { - "chat_history": [ - {"role": "USER", "message": cohere_prompt} - ], - "message": "Please provide a summary.", - "model": model, - "connectors": [{"id": "web-search"}] - } - - logging.debug("cohere: Submitting request to API endpoint") - print("cohere: Submitting request to API endpoint") - response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) - response_data = response.json() - logging.debug("API Response Data: %s", response_data) - - if response.status_code == 200: - if 'text' in response_data: - summary = response_data['text'].strip() - logging.debug("cohere: Summarization successful") - print("Summary processed successfully.") - return summary - else: - logging.error("Expected data not found in API response.") - return "Expected data not found in API response." - else: - logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") - print(f"Failed to process summary, status code {response.status_code}: {response.text}") - return f"cohere: API request failed: {response.text}" - - except Exception as e: - logging.error("cohere: Error in processing: %s", str(e)) - return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" - - -# https://console.groq.com/docs/quickstart -def summarize_with_groq(api_key, file_path, model, custom_prompt_arg): - try: - logging.debug("groq: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"groq: Extracting text from segments file") - text = extract_text_from_segments(segments) - - headers = { - 'Authorization': f'Bearer {api_key}', - 'Content-Type': 'application/json' - } - - groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - logging.debug("groq: Prompt being sent is {groq_prompt}") - - data = { - "messages": [ - { - "role": "user", - "content": groq_prompt - } - ], - "model": model - } - - logging.debug("groq: Submitting request to API endpoint") - print("groq: Submitting request to API endpoint") - response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) - - response_data = response.json() - logging.debug("API Response Data: %s", response_data) - - if response.status_code == 200: - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("groq: Summarization successful") - print("Summarization successful.") - return summary - else: - logging.error("Expected data not found in API response.") - return "Expected data not found in API response." - else: - logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") - return f"groq: API request failed: {response.text}" - - except Exception as e: - logging.error("groq: Error in processing: %s", str(e)) - return f"groq: Error occurred while processing summary with groq: {str(e)}" - - -def summarize_with_openrouter(api_key, json_file_path, custom_prompt_arg): - import requests - import json - global openrouter_model - - config = configparser.ConfigParser() - file_path = 'config.txt' - - # Check if the file exists in the specified path - if os.path.exists(file_path): - config.read(file_path) - elif os.path.exists('config.txt'): # Check in the current directory - config.read('../config.txt') - else: - print("config.txt not found in the specified path or current directory.") - - openrouter_api_token = config.get('API', 'openrouter_api_token', fallback=None) - if openrouter_model is None: - openrouter_model = "mistralai/mistral-7b-instruct:free" - - openrouter_prompt = f"{json_file_path} \n\n\n\n{custom_prompt_arg}" - - try: - logging.debug("openrouter: Submitting request to API endpoint") - print("openrouter: Submitting request to API endpoint") - response = requests.post( - url="https://openrouter.ai/api/v1/chat/completions", - headers={ - "Authorization": f"Bearer {openrouter_api_token}", - }, - data=json.dumps({ - "model": f"{openrouter_model}", - "messages": [ - {"role": "user", "content": openrouter_prompt} - ] - }) - ) - - response_data = response.json() - logging.debug("API Response Data: %s", response_data) - - if response.status_code == 200: - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("openrouter: Summarization successful") - print("openrouter: Summarization successful.") - return summary - else: - logging.error("openrouter: Expected data not found in API response.") - return "openrouter: Expected data not found in API response." - else: - logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}") - return f"openrouter: API request failed: {response.text}" - except Exception as e: - logging.error("openrouter: Error in processing: %s", str(e)) - return f"openrouter: Error occurred while processing summary with openrouter: {str(e)}" - -def summarize_with_huggingface(api_key, file_path, custom_prompt_arg): - logging.debug(f"huggingface: Summarization process starting...") - try: - logging.debug("huggingface: Loading json data for summarization") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug("huggingface: Extracting text from the segments") - logging.debug(f"huggingface: Segments: {segments}") - text = ' '.join([segment['text'] for segment in segments]) - - print(f"huggingface: lets make sure the HF api key exists...\n\t {api_key}") - headers = { - "Authorization": f"Bearer {api_key}" - } - - model = "microsoft/Phi-3-mini-128k-instruct" - API_URL = f"https://api-inference.huggingface.co/models/{model}" - - huggingface_prompt = f"{text}\n\n\n\n{custom_prompt_arg}" - logging.debug("huggingface: Prompt being sent is {huggingface_prompt}") - data = { - "inputs": text, - "parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed - } - - print(f"huggingface: lets make sure the HF api key is the same..\n\t {huggingface_api_key}") - - logging.debug("huggingface: Submitting request...") - - response = requests.post(API_URL, headers=headers, json=data) - - if response.status_code == 200: - summary = response.json()[0]['summary_text'] - logging.debug("huggingface: Summarization successful") - print("Summarization successful.") - return summary - else: - logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") - return f"Failed to process summary, status code {response.status_code}: {response.text}" - except Exception as e: - logging.error("huggingface: Error in processing: %s", str(e)) - print(f"Error occurred while processing summary with huggingface: {str(e)}") - return None - - # FIXME - # This is here for gradio authentication - # Its just not setup. - # def same_auth(username, password): - # return username == password - - -# -# -####################################################################################################################### - - - - - - - - -# Set up logging -#logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') -#logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') -logger = logging.getLogger(__name__) - - -# Custom exceptions -class DatabaseError(Exception): - pass - - -class InputError(Exception): - pass - - -# Database connection function with connection pooling -class Database: - def __init__(self, db_name=None): - self.db_name = db_name or os.getenv('DB_NAME', 'media_summary.db') - self.pool = [] - self.pool_size = 10 - - @contextmanager - def get_connection(self): - retry_count = 5 - retry_delay = 1 - conn = None - while retry_count > 0: - try: - conn = self.pool.pop() if self.pool else sqlite3.connect(self.db_name, check_same_thread=False) - yield conn - self.pool.append(conn) - return - except sqlite3.OperationalError as e: - if 'database is locked' in str(e): - logging.warning(f"Database is locked, retrying in {retry_delay} seconds...") - retry_count -= 1 - time.sleep(retry_delay) - else: - raise DatabaseError(f"Database error: {e}") - except Exception as e: - raise DatabaseError(f"Unexpected error: {e}") - finally: - # Ensure the connection is returned to the pool even on failure - if conn: - self.pool.append(conn) - raise DatabaseError("Database is locked and retries have been exhausted") - - def execute_query(self, query: str, params: Tuple = ()) -> None: - with self.get_connection() as conn: - try: - cursor = conn.cursor() - cursor.execute(query, params) - conn.commit() - except sqlite3.Error as e: - raise DatabaseError(f"Database error: {e}, Query: {query}") - -db = Database() - - -# Function to create tables with the new media schema -def create_tables() -> None: - table_queries = [ - ''' - CREATE TABLE IF NOT EXISTS Media ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - url TEXT, - title TEXT NOT NULL, - type TEXT NOT NULL, - content TEXT, - author TEXT, - ingestion_date TEXT, - prompt TEXT, - summary TEXT, - transcription_model TEXT - ) - ''', - ''' - CREATE TABLE IF NOT EXISTS Keywords ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - keyword TEXT NOT NULL UNIQUE - ) - ''', - ''' - CREATE TABLE IF NOT EXISTS MediaKeywords ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - media_id INTEGER NOT NULL, - keyword_id INTEGER NOT NULL, - FOREIGN KEY (media_id) REFERENCES Media(id), - FOREIGN KEY (keyword_id) REFERENCES Keywords(id) - ) - ''', - ''' - CREATE TABLE IF NOT EXISTS MediaVersion ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - media_id INTEGER NOT NULL, - version INTEGER NOT NULL, - prompt TEXT, - summary TEXT, - created_at TEXT NOT NULL, - FOREIGN KEY (media_id) REFERENCES Media(id) - ) - ''', - ''' - CREATE TABLE IF NOT EXISTS MediaModifications ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - media_id INTEGER NOT NULL, - prompt TEXT, - summary TEXT, - modification_date TEXT, - FOREIGN KEY (media_id) REFERENCES Media(id) - ) - ''', - ''' - CREATE VIRTUAL TABLE IF NOT EXISTS media_fts USING fts5(title, content); - ''', - ''' - CREATE VIRTUAL TABLE IF NOT EXISTS keyword_fts USING fts5(keyword); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_media_title ON Media(title); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_media_type ON Media(type); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_media_author ON Media(author); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_media_ingestion_date ON Media(ingestion_date); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_keywords_keyword ON Keywords(keyword); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_mediakeywords_media_id ON MediaKeywords(media_id); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_mediakeywords_keyword_id ON MediaKeywords(keyword_id); - ''', - ''' - CREATE INDEX IF NOT EXISTS idx_media_version_media_id ON MediaVersion(media_id); - ''' - ] - for query in table_queries: - db.execute_query(query) - -create_tables() - - -####################################################################################################################### -# Keyword-related Functions -# - -# Function to add a keyword -def add_keyword(keyword: str) -> int: - keyword = keyword.strip().lower() - with db.get_connection() as conn: - cursor = conn.cursor() - try: - cursor.execute('INSERT OR IGNORE INTO Keywords (keyword) VALUES (?)', (keyword,)) - cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,)) - keyword_id = cursor.fetchone()[0] - cursor.execute('INSERT OR IGNORE INTO keyword_fts (rowid, keyword) VALUES (?, ?)', (keyword_id, keyword)) - logging.info(f"Keyword '{keyword}' added to keyword_fts with ID: {keyword_id}") - conn.commit() - return keyword_id - except sqlite3.IntegrityError as e: - logging.error(f"Integrity error adding keyword: {e}") - raise DatabaseError(f"Integrity error adding keyword: {e}") - except sqlite3.Error as e: - logging.error(f"Error adding keyword: {e}") - raise DatabaseError(f"Error adding keyword: {e}") - - -# Function to delete a keyword -def delete_keyword(keyword: str) -> str: - keyword = keyword.strip().lower() - with db.get_connection() as conn: - cursor = conn.cursor() - try: - cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,)) - keyword_id = cursor.fetchone() - if keyword_id: - cursor.execute('DELETE FROM Keywords WHERE keyword = ?', (keyword,)) - cursor.execute('DELETE FROM keyword_fts WHERE rowid = ?', (keyword_id[0],)) - conn.commit() - return f"Keyword '{keyword}' deleted successfully." - else: - return f"Keyword '{keyword}' not found." - except sqlite3.Error as e: - raise DatabaseError(f"Error deleting keyword: {e}") - - - -# Function to add media with keywords -def add_media_with_keywords(url, title, media_type, content, keywords, prompt, summary, transcription_model, author, ingestion_date): - # Set default values for missing fields - url = url or 'Unknown' - title = title or 'Untitled' - media_type = media_type or 'Unknown' - content = content or 'No content available' - keywords = keywords or 'default' - prompt = prompt or 'No prompt available' - summary = summary or 'No summary available' - transcription_model = transcription_model or 'Unknown' - author = author or 'Unknown' - ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d') - - # Ensure URL is valid - if not is_valid_url(url): - url = 'localhost' - - if media_type not in ['document', 'video', 'article']: - raise InputError("Invalid media type. Allowed types: document, video, article.") - - if ingestion_date and not is_valid_date(ingestion_date): - raise InputError("Invalid ingestion date format. Use YYYY-MM-DD.") - - if not ingestion_date: - ingestion_date = datetime.now().strftime('%Y-%m-%d') - - # Split keywords correctly by comma - keyword_list = [keyword.strip().lower() for keyword in keywords.split(',')] - - logging.info(f"URL: {url}") - logging.info(f"Title: {title}") - logging.info(f"Media Type: {media_type}") - logging.info(f"Keywords: {keywords}") - logging.info(f"Content: {content}") - logging.info(f"Prompt: {prompt}") - logging.info(f"Summary: {summary}") - logging.info(f"Author: {author}") - logging.info(f"Ingestion Date: {ingestion_date}") - logging.info(f"Transcription Model: {transcription_model}") - - try: - with db.get_connection() as conn: - cursor = conn.cursor() - - # Initialize keyword_list - keyword_list = [keyword.strip().lower() for keyword in keywords.split(',')] - - # Check if media already exists - cursor.execute('SELECT id FROM Media WHERE url = ?', (url,)) - existing_media = cursor.fetchone() - - if existing_media: - media_id = existing_media[0] - logger.info(f"Existing media found with ID: {media_id}") - - # Insert new prompt and summary into MediaModifications - cursor.execute(''' - INSERT INTO MediaModifications (media_id, prompt, summary, modification_date) - VALUES (?, ?, ?, ?) - ''', (media_id, prompt, summary, ingestion_date)) - logger.info("New summary and prompt added to MediaModifications") - else: - logger.info("New media entry being created") - - # Insert new media item - cursor.execute(''' - INSERT INTO Media (url, title, type, content, author, ingestion_date, transcription_model) - VALUES (?, ?, ?, ?, ?, ?, ?) - ''', (url, title, media_type, content, author, ingestion_date, transcription_model)) - media_id = cursor.lastrowid - - # Insert keywords and associate with media item - for keyword in keyword_list: - keyword = keyword.strip().lower() - cursor.execute('INSERT OR IGNORE INTO Keywords (keyword) VALUES (?)', (keyword,)) - cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,)) - keyword_id = cursor.fetchone()[0] - cursor.execute('INSERT OR IGNORE INTO MediaKeywords (media_id, keyword_id) VALUES (?, ?)', (media_id, keyword_id)) - cursor.execute('INSERT INTO media_fts (rowid, title, content) VALUES (?, ?, ?)', (media_id, title, content)) - - # Also insert the initial prompt and summary into MediaModifications - cursor.execute(''' - INSERT INTO MediaModifications (media_id, prompt, summary, modification_date) - VALUES (?, ?, ?, ?) - ''', (media_id, prompt, summary, ingestion_date)) - - conn.commit() - - # Insert initial version of the prompt and summary - add_media_version(media_id, prompt, summary) - - return f"Media '{title}' added successfully with keywords: {', '.join(keyword_list)}" - except sqlite3.IntegrityError as e: - logger.error(f"Integrity Error: {e}") - raise DatabaseError(f"Integrity error adding media with keywords: {e}") - except sqlite3.Error as e: - logger.error(f"SQL Error: {e}") - raise DatabaseError(f"Error adding media with keywords: {e}") - except Exception as e: - logger.error(f"Unexpected Error: {e}") - raise DatabaseError(f"Unexpected error: {e}") - - -def fetch_all_keywords() -> List[str]: - try: - with db.get_connection() as conn: - cursor = conn.cursor() - cursor.execute('SELECT keyword FROM Keywords') - keywords = [row[0] for row in cursor.fetchall()] - return keywords - except sqlite3.Error as e: - raise DatabaseError(f"Error fetching keywords: {e}") - -def keywords_browser_interface(): - keywords = fetch_all_keywords() - return gr.Markdown("\n".join(f"- {keyword}" for keyword in keywords)) - -def display_keywords(): - try: - keywords = fetch_all_keywords() - return "\n".join(keywords) if keywords else "No keywords found." - except DatabaseError as e: - return str(e) - - -def export_keywords_to_csv(): - try: - keywords = fetch_all_keywords() - if not keywords: - return None, "No keywords found in the database." - - filename = "keywords.csv" - with open(filename, 'w', newline='', encoding='utf-8') as file: - writer = csv.writer(file) - writer.writerow(["Keyword"]) - for keyword in keywords: - writer.writerow([keyword]) - - return filename, f"Keywords exported to {filename}" - except Exception as e: - logger.error(f"Error exporting keywords to CSV: {e}") - return None, f"Error exporting keywords: {e}" - - -# -# -####################################################################################################################### - - - - -# Function to add a version of a prompt and summary -def add_media_version(media_id: int, prompt: str, summary: str) -> None: - try: - with db.get_connection() as conn: - cursor = conn.cursor() - - # Get the current version number - cursor.execute('SELECT MAX(version) FROM MediaVersion WHERE media_id = ?', (media_id,)) - current_version = cursor.fetchone()[0] or 0 - - # Insert the new version - cursor.execute(''' - INSERT INTO MediaVersion (media_id, version, prompt, summary, created_at) - VALUES (?, ?, ?, ?, ?) - ''', (media_id, current_version + 1, prompt, summary, datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) - conn.commit() - except sqlite3.Error as e: - raise DatabaseError(f"Error adding media version: {e}") - - -# Function to search the database with advanced options, including keyword search and full-text search -def search_db(search_query: str, search_fields: List[str], keywords: str, page: int = 1, results_per_page: int = 10): - if page < 1: - raise ValueError("Page number must be 1 or greater.") - - # Prepare keywords by splitting and trimming - keywords = [keyword.strip().lower() for keyword in keywords.split(',') if keyword.strip()] - - with db.get_connection() as conn: - cursor = conn.cursor() - offset = (page - 1) * results_per_page - - # Prepare the search conditions for general fields - search_conditions = [] - params = [] - - for field in search_fields: - if search_query: # Ensure there's a search query before adding this condition - search_conditions.append(f"Media.{field} LIKE ?") - params.append(f'%{search_query}%') - - # Prepare the conditions for keywords filtering - keyword_conditions = [] - for keyword in keywords: - keyword_conditions.append( - f"EXISTS (SELECT 1 FROM MediaKeywords mk JOIN Keywords k ON mk.keyword_id = k.id WHERE mk.media_id = Media.id AND k.keyword LIKE ?)") - params.append(f'%{keyword}%') - - # Combine all conditions - where_clause = " AND ".join( - search_conditions + keyword_conditions) if search_conditions or keyword_conditions else "1=1" - - # Complete the query - query = f''' - SELECT DISTINCT Media.url, Media.title, Media.type, Media.content, Media.author, Media.ingestion_date, Media.prompt, Media.summary - FROM Media - WHERE {where_clause} - LIMIT ? OFFSET ? - ''' - params.extend([results_per_page, offset]) - - cursor.execute(query, params) - results = cursor.fetchall() - - return results - - -# Gradio function to handle user input and display results with pagination, with better feedback -def search_and_display(search_query, search_fields, keywords, page): - results = search_db(search_query, search_fields, keywords, page) - - if isinstance(results, pd.DataFrame): - # Convert DataFrame to a list of tuples or lists - processed_results = results.values.tolist() # This converts DataFrame rows to lists - elif isinstance(results, list): - # Ensure that each element in the list is itself a list or tuple (not a dictionary) - processed_results = [list(item.values()) if isinstance(item, dict) else item for item in results] - else: - raise TypeError("Unsupported data type for results") - - return processed_results - - -def display_details(index, results): - if index is None or results is None: - return "Please select a result to view details." - - try: - # Ensure the index is an integer and access the row properly - index = int(index) - if isinstance(results, pd.DataFrame): - if index >= len(results): - return "Index out of range. Please select a valid index." - selected_row = results.iloc[index] - else: - # If results is not a DataFrame, but a list (assuming list of dicts) - selected_row = results[index] - except ValueError: - return "Index must be an integer." - except IndexError: - return "Index out of range. Please select a valid index." - - # Build HTML output safely - details_html = f""" -

{selected_row.get('Title', 'No Title')}

-

URL: {selected_row.get('URL', 'No URL')}

-

Type: {selected_row.get('Type', 'No Type')}

-

Author: {selected_row.get('Author', 'No Author')}

-

Ingestion Date: {selected_row.get('Ingestion Date', 'No Date')}

-

Prompt: {selected_row.get('Prompt', 'No Prompt')}

-

Summary: {selected_row.get('Summary', 'No Summary')}

-

Content: {selected_row.get('Content', 'No Content')}

- """ - return details_html - - -def get_details(index, dataframe): - if index is None or dataframe is None or index >= len(dataframe): - return "Please select a result to view details." - row = dataframe.iloc[index] - details = f""" -

{row['Title']}

-

URL: {row['URL']}

-

Type: {row['Type']}

-

Author: {row['Author']}

-

Ingestion Date: {row['Ingestion Date']}

-

Prompt: {row['Prompt']}

-

Summary: {row['Summary']}

-

Content:

-
{row['Content']}
- """ - return details - - -def format_results(results): - if not results: - return pd.DataFrame(columns=['URL', 'Title', 'Type', 'Content', 'Author', 'Ingestion Date', 'Prompt', 'Summary']) - - df = pd.DataFrame(results, columns=['URL', 'Title', 'Type', 'Content', 'Author', 'Ingestion Date', 'Prompt', 'Summary']) - logging.debug(f"Formatted DataFrame: {df}") - - return df - -# Function to export search results to CSV with pagination -def export_to_csv(search_query: str, search_fields: List[str], keyword: str, page: int = 1, results_per_file: int = 1000): - try: - results = search_db(search_query, search_fields, keyword, page, results_per_file) - df = format_results(results) - filename = f'search_results_page_{page}.csv' - df.to_csv(filename, index=False) - return f"Results exported to {filename}" - except (DatabaseError, InputError) as e: - return str(e) - - -# Helper function to validate URL format -def is_valid_url(url: str) -> bool: - regex = re.compile( - r'^(?:http|ftp)s?://' # http:// or https:// - r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... - r'localhost|' # localhost... - r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4 - r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 - r'(?::\d+)?' # optional port - r'(?:/?|[/?]\S+)$', re.IGNORECASE) - return re.match(regex, url) is not None - - -# Helper function to validate date format -def is_valid_date(date_string: str) -> bool: - try: - datetime.strptime(date_string, '%Y-%m-%d') - return True - except ValueError: - return False - -# -# -####################################################################################################################### - - - - -####################################################################################################################### -# Functions to manage prompts DB -# - -def create_prompts_db(): - conn = sqlite3.connect('prompts.db') - cursor = conn.cursor() - cursor.execute(''' - CREATE TABLE IF NOT EXISTS Prompts ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - name TEXT NOT NULL UNIQUE, - details TEXT, - system TEXT, - user TEXT - ) - ''') - conn.commit() - conn.close() - -create_prompts_db() - - -def add_prompt(name, details, system, user=None): - try: - conn = sqlite3.connect('prompts.db') - cursor = conn.cursor() - cursor.execute(''' - INSERT INTO Prompts (name, details, system, user) - VALUES (?, ?, ?, ?) - ''', (name, details, system, user)) - conn.commit() - conn.close() - return "Prompt added successfully." - except sqlite3.IntegrityError: - return "Prompt with this name already exists." - except sqlite3.Error as e: - return f"Database error: {e}" - -def fetch_prompt_details(name): - conn = sqlite3.connect('prompts.db') - cursor = conn.cursor() - cursor.execute(''' - SELECT details, system, user - FROM Prompts - WHERE name = ? - ''', (name,)) - result = cursor.fetchone() - conn.close() - return result - -def list_prompts(): - conn = sqlite3.connect('prompts.db') - cursor = conn.cursor() - cursor.execute(''' - SELECT name - FROM Prompts - ''') - results = cursor.fetchall() - conn.close() - return [row[0] for row in results] - -def insert_prompt_to_db(title, description, system_prompt, user_prompt): - result = add_prompt(title, description, system_prompt, user_prompt) - return result - -# -# -####################################################################################################################### - - - - - - -####################################################################################################################### -# Function Definitions -# - -######### Words-per-second Chunking ######### -def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: - words = transcript.split() - words_per_chunk = chunk_duration * words_per_second - chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] - return chunks - - -#def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, -# words_per_second: int) -> str: -# if api_name not in summarizers: # See 'summarizers' dict in the main script -# return f"Unsupported API: {api_name}" - -# summarizer = summarizers[api_name] -# text = extract_text_from_segments(transcript) -# chunks = chunk_transcript(text, chunk_duration, words_per_second) - -# summaries = [] -# for chunk in chunks: -# if api_name == 'openai': -# # Ensure the correct model and prompt are passed -## summaries.append(summarizer(api_key, chunk, custom_prompt)) - # else: -# summaries.append(summarizer(api_key, chunk)) -# -# return "\n\n".join(summaries) - - -################## #################### - - -######### Token-size Chunking ######### FIXME - OpenAI only currently -# This is dirty and shameful and terrible. It should be replaced with a proper implementation. -# anyways lets get to it.... -openai_api_key = "Fake_key" # FIXME -client = OpenAI(api_key=openai_api_key) - - -def get_chat_completion(messages, model='gpt-4-turbo'): - response = client.chat.completions.create( - model=model, - messages=messages, - temperature=0, - ) - return response.choices[0].message.content - - -# This function chunks a text into smaller pieces based on a maximum token count and a delimiter -def chunk_on_delimiter(input_string: str, - max_tokens: int, - delimiter: str) -> List[str]: - chunks = input_string.split(delimiter) - combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum( - chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True) - if dropped_chunk_count > 0: - print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.") - combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks] - return combined_chunks - - -# This function combines text chunks into larger blocks without exceeding a specified token count. -# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow. -def combine_chunks_with_no_minimum( - chunks: List[str], - max_tokens: int, - chunk_delimiter="\n\n", - header: Optional[str] = None, - add_ellipsis_for_overflow=False, -) -> Tuple[List[str], List[int]]: - dropped_chunk_count = 0 - output = [] # list to hold the final combined chunks - output_indices = [] # list to hold the indices of the final combined chunks - candidate = ( - [] if header is None else [header] - ) # list to hold the current combined chunk candidate - candidate_indices = [] - for chunk_i, chunk in enumerate(chunks): - chunk_with_header = [chunk] if header is None else [header, chunk] - # FIXME MAKE NOT OPENAI SPECIFIC - if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens: - print(f"warning: chunk overflow") - if ( - add_ellipsis_for_overflow - # FIXME MAKE NOT OPENAI SPECIFIC - and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens - ): - candidate.append("...") - dropped_chunk_count += 1 - continue # this case would break downstream assumptions - # estimate token count with the current chunk added - # FIXME MAKE NOT OPENAI SPECIFIC - extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk]))) - # If the token count exceeds max_tokens, add the current candidate to output and start a new candidate - if extended_candidate_token_count > max_tokens: - output.append(chunk_delimiter.join(candidate)) - output_indices.append(candidate_indices) - candidate = chunk_with_header # re-initialize candidate - candidate_indices = [chunk_i] - # otherwise keep extending the candidate - else: - candidate.append(chunk) - candidate_indices.append(chunk_i) - # add the remaining candidate to output if it's not empty - if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0): - output.append(chunk_delimiter.join(candidate)) - output_indices.append(candidate_indices) - return output, output_indices, dropped_chunk_count - - -def rolling_summarize(text: str, - detail: float = 0, - model: str = 'gpt-4-turbo', - additional_instructions: Optional[str] = None, - minimum_chunk_size: Optional[int] = 500, - chunk_delimiter: str = ".", - summarize_recursively=False, - verbose=False): - """ - Summarizes a given text by splitting it into chunks, each of which is summarized individually. - The level of detail in the summary can be adjusted, and the process can optionally be made recursive. - - Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1 - indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more - detailed summary. Defaults to 0. - model (str, optional): The model to use for generating summaries. Defaults to - 'gpt-3.5-turbo'. - additional_instructions (Optional[str], optional): Additional instructions to provide to the - model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text - chunks. Defaults to 500. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. - Defaults to ".". - summarize_recursively (bool, optional): If True, summaries are generated recursively, - using previous summaries for context. - verbose (bool, optional): If True, prints detailed information about the - chunking process. - - Returns: - - str: The final compiled summary of the text. - - The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count - based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If - `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the - summarization process. The function returns a compiled summary of all chunks. - """ - - # check detail is set correctly - assert 0 <= detail <= 1 - - # interpolate the number of chunks based to get specified level of detail - max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter)) - min_chunks = 1 - num_chunks = int(min_chunks + detail * (max_chunks - min_chunks)) - - # adjust chunk_size based on interpolated number of chunks - # FIXME MAKE NOT OPENAI SPECIFIC - document_length = len(openai_tokenize(text)) - chunk_size = max(minimum_chunk_size, document_length // num_chunks) - text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter) - if verbose: - print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.") - # FIXME MAKE NOT OPENAI SPECIFIC - print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}") - - # set system message - system_message_content = "Rewrite this text in summarized form." - if additional_instructions is not None: - system_message_content += f"\n\n{additional_instructions}" - - accumulated_summaries = [] - for chunk in tqdm(text_chunks): - if summarize_recursively and accumulated_summaries: - # Creating a structured prompt for recursive summarization - accumulated_summaries_string = '\n\n'.join(accumulated_summaries) - user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}" - else: - # Directly passing the chunk for summarization without recursive context - user_message_content = chunk - - # Constructing messages based on whether recursive summarization is applied - messages = [ - {"role": "system", "content": system_message_content}, - {"role": "user", "content": user_message_content} - ] - - # Assuming this function gets the completion and works as expected - response = get_chat_completion(messages, model=model) - accumulated_summaries.append(response) - - # Compile final summary from partial summaries - global final_summary - final_summary = '\n\n'.join(accumulated_summaries) - - return final_summary - - -####################################### - - -######### Words-per-second Chunking ######### -# FIXME - WHole section needs to be re-written -def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]: - words = transcript.split() - words_per_chunk = chunk_duration * words_per_second - chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)] - return chunks - - -# -# FIXME - WHole section needs to be re-written -def summarize_with_detail_openai(text, detail, verbose=False): - summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True) - print(len(openai_tokenize(summary_with_detail_variable))) - return summary_with_detail_variable - - -def summarize_with_detail_recursive_openai(text, detail, verbose=False): - summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True) - print(summary_with_recursive_summarization) - -# -# -################################################################################# - - - -# Read configuration from file -config = configparser.ConfigParser() -config.read('../config.txt') - -# Local-Models -kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') -kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') - -llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') -llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') - -ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') -ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') - -tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') -tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None) - -vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions') -vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None) - -####################################################################################################################### -# Function Definitions -# - -def summarize_with_local_llm(file_path, custom_prompt_arg): - try: - logging.debug("Local LLM: Loading json data for summarization") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug("Local LLM: Extracting text from the segments") - text = extract_text_from_segments(segments) - - headers = { - 'Content-Type': 'application/json' - } - - logging.debug("Local LLM: Preparing data + prompt for submittal") - local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" - data = { - "messages": [ - { - "role": "system", - "content": "You are a professional summarizer." - }, - { - "role": "user", - "content": local_llm_prompt - } - ], - "max_tokens": 28000, # Adjust tokens as needed - } - logging.debug("Local LLM: Posting request") - response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) - - if response.status_code == 200: - response_data = response.json() - if 'choices' in response_data and len(response_data['choices']) > 0: - summary = response_data['choices'][0]['message']['content'].strip() - logging.debug("Local LLM: Summarization successful") - print("Local LLM: Summarization successful.") - return summary - else: - logging.warning("Local LLM: Summary not found in the response data") - return "Local LLM: Summary not available" - else: - logging.debug("Local LLM: Summarization failed") - print("Local LLM: Failed to process summary:", response.text) - return "Local LLM: Failed to process summary" - except Exception as e: - logging.debug("Local LLM: Error in processing: %s", str(e)) - print("Error occurred while processing summary with Local LLM:", str(e)) - return "Local LLM: Error occurred while processing summary" - -def summarize_with_llama(api_url, file_path, token, custom_prompt): - try: - logging.debug("llama: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"llama: Extracting text from segments file") - text = extract_text_from_segments(segments) # Define this function to extract text properly - - headers = { - 'accept': 'application/json', - 'content-type': 'application/json', - } - if len(token) > 5: - headers['Authorization'] = f'Bearer {token}' - - llama_prompt = f"{text} \n\n\n\n{custom_prompt}" - logging.debug("llama: Prompt being sent is {llama_prompt}") - - data = { - "prompt": llama_prompt - } - - logging.debug("llama: Submitting request to API endpoint") - print("llama: Submitting request to API endpoint") - response = requests.post(api_url, headers=headers, json=data) - response_data = response.json() - logging.debug("API Response Data: %s", response_data) - - if response.status_code == 200: - # if 'X' in response_data: - logging.debug(response_data) - summary = response_data['content'].strip() - logging.debug("llama: Summarization successful") - print("Summarization successful.") - return summary - else: - logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") - return f"llama: API request failed: {response.text}" - - except Exception as e: - logging.error("llama: Error in processing: %s", str(e)) - return f"llama: Error occurred while processing summary with llama: {str(e)}" - - -# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate -def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt): - try: - logging.debug("kobold: Loading JSON data") - with open(file_path, 'r') as file: - segments = json.load(file) - - logging.debug(f"kobold: Extracting text from segments file") - text = extract_text_from_segments(segments) - - headers = { - 'accept': 'application/json', - 'content-type': 'application/json', - } - - kobold_prompt = f"{text} \n\n\n\n{custom_prompt}" - logging.debug("kobold: Prompt being sent is {kobold_prompt}") - - # FIXME - # Values literally c/p from the api docs.... - data = { - "max_context_length": 8096, - "max_length": 4096, - "prompt": f"{text}\n\n\n\n{custom_prompt}" - } - - logging.debug("kobold: Submitting request to API endpoint") - print("kobold: Submitting request to API endpoint") - response = requests.post(api_url, headers=headers, json=data) - response_data = response.json() - logging.debug("kobold: API Response Data: %s", response_data) - - if response.status_code == 200: - if 'results' in response_data and len(response_data['results']) > 0: - summary = response_data['results'][0]['text'].strip() - logging.debug("kobold: Summarization successful") - print("Summarization successful.") - save_summary_to_file(summary, file_path) # Save the summary to a file - return summary - else: - logging.error("Expected data not found in API response.") - return "Expected data not found in API response." - else: - logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") - return f"kobold: API request failed: {response.text}" - except Exception as e: - logging.error("kobold: Error in processing: %s", str(e)) - return f"kobold: Error occurred while processing summary with kobold: {str(e)}" +# +# +####################################################################################################################### -# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API -def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt): +####################################################################################################################### +# Summarizers +# +# + +# Fixme , function is replicated.... +def extract_text_from_segments(segments): + logging.debug(f"Main: extracting text from {segments}") + text = ' '.join([segment['text'] for segment in segments]) + logging.debug(f"Main: Successfully extracted text from {segments}") + return text + + +def summarize_with_openai(api_key, file_path, custom_prompt_arg): try: - logging.debug("ooba: Loading JSON data") + logging.debug("openai: Loading json data for summarization") with open(file_path, 'r') as file: segments = json.load(file) - logging.debug(f"ooba: Extracting text from segments file\n\n\n") + open_ai_model = openai_model or 'gpt-4-turbo' + + logging.debug("openai: Extracting text from the segments") text = extract_text_from_segments(segments) - logging.debug(f"ooba: Finished extracting text from segments file") headers = { - 'accept': 'application/json', - 'content-type': 'application/json', + 'Authorization': f'Bearer {api_key}', + 'Content-Type': 'application/json' } - # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It - # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are - # my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable - ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}" - logging.debug("ooba: Prompt being sent is {ooba_prompt}") - + logging.debug(f"openai: API Key is: {api_key}") + logging.debug("openai: Preparing data + prompt for submittal") + openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" data = { - "mode": "chat", - "character": "Example", - "messages": [{"role": "user", "content": ooba_prompt}] + "model": open_ai_model, + "messages": [ + { + "role": "system", + "content": "You are a professional summarizer." + }, + { + "role": "user", + "content": openai_prompt + } + ], + "max_tokens": 8192, # Adjust tokens as needed + "temperature": 0.1 } - - logging.debug("ooba: Submitting request to API endpoint") - print("ooba: Submitting request to API endpoint") - response = requests.post(api_url, headers=headers, json=data, verify=False) - logging.debug("ooba: API Response Data: %s", response) + logging.debug("openai: Posting request") + response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) if response.status_code == 200: response_data = response.json() - summary = response.json()['choices'][0]['message']['content'] - logging.debug("ooba: Summarization successful") - print("Summarization successful.") - return summary + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("openai: Summarization successful") + print("openai: Summarization successful.") + return summary + else: + logging.warning("openai: Summary not found in the response data") + return "openai: Summary not available" else: - logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") - return f"ooba: API request failed with status code {response.status_code}: {response.text}" - + logging.debug("openai: Summarization failed") + print("openai: Failed to process summary:", response.text) + return "openai: Failed to process summary" except Exception as e: - logging.error("ooba: Error in processing: %s", str(e)) - return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" - - -# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. -def summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg): - vllm_client = OpenAI( - base_url=vllm_api_url, - api_key=vllm_api_key_function_arg - ) - - custom_prompt = vllm_custom_prompt_function_arg - - completion = client.chat.completions.create( - model=llm_model, - messages=[ - {"role": "system", "content": "You are a professional summarizer."}, - {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} - ] - ) - vllm_summary = completion.choices[0].message.content - return vllm_summary + logging.debug("openai: Error in processing: %s", str(e)) + print("openai: Error occurred while processing summary with openai:", str(e)) + return "openai: Error occurred while processing summary" -# FIXME - Install is more trouble than care to deal with right now. -def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt): - model = tabby_model - headers = { - 'Authorization': f'Bearer {tabby_api_key}', - 'Content-Type': 'application/json' - } - data = { - 'text': text, - 'model': 'tabby' # Specify the model if needed - } +def summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5): try: - response = requests.post('https://api.tabbyapi.com/summarize', headers=headers, json=data) - response.raise_for_status() - summary = response.json().get('summary', '') - return summary - except requests.exceptions.RequestException as e: - logger.error(f"Error summarizing with TabbyAPI: {e}") - return "Error summarizing with TabbyAPI." - - -def save_summary_to_file(summary, file_path): - logging.debug("Now saving summary to file...") - base_name = os.path.splitext(os.path.basename(file_path))[0] - summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt') - os.makedirs(os.path.dirname(summary_file_path), exist_ok=True) - logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") - with open(summary_file_path, 'w') as file: - file.write(summary) - logging.info(f"Summary saved to file: {summary_file_path}") - -# From Video_DL_Ingestion_Lib.py -# def save_summary_to_file(summary: str, file_path: str): -# """Save summary to a JSON file.""" -# summary_data = {'summary': summary, 'generated_at': datetime.now().isoformat()} -# with open(file_path, 'w') as file: -# json.dump(summary_data, file, indent=4) - - -# -# -####################################################################################################################### - - - - - - -####################################################################################################################### -# Function Definitions -# + logging.debug("anthropic: Loading JSON data") + with open(file_path, 'r') as file: + segments = json.load(file) -# Download latest llamafile from Github - # Example usage - #repo = "Mozilla-Ocho/llamafile" - #asset_name_prefix = "llamafile-" - #output_filename = "llamafile" - #download_latest_llamafile(repo, asset_name_prefix, output_filename) -def download_latest_llamafile(repo, asset_name_prefix, output_filename): - # Check if the file already exists - print("Checking for and downloading Llamafile it it doesn't already exist...") - if os.path.exists(output_filename): - print("Llamafile already exists. Skipping download.") - logging.debug(f"{output_filename} already exists. Skipping download.") - llamafile_exists = True - else: - llamafile_exists = False + logging.debug("anthropic: Extracting text from the segments file") + text = extract_text_from_segments(segments) - if llamafile_exists == True: - pass - else: - # Get the latest release information - latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" - response = requests.get(latest_release_url) - if response.status_code != 200: - raise Exception(f"Failed to fetch latest release info: {response.status_code}") + headers = { + 'x-api-key': api_key, + 'anthropic-version': '2023-06-01', + 'Content-Type': 'application/json' + } - latest_release_data = response.json() - tag_name = latest_release_data['tag_name'] + anthropic_prompt = custom_prompt_arg # Sanitize the custom prompt + logging.debug(f"anthropic: Prompt is {anthropic_prompt}") + user_message = { + "role": "user", + "content": f"{text} \n\n\n\n{anthropic_prompt}" + } - # Get the release details using the tag name - release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" - response = requests.get(release_details_url) - if response.status_code != 200: - raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") + data = { + "model": model, + "max_tokens": 4096, # max _possible_ tokens to return + "messages": [user_message], + "stop_sequences": ["\n\nHuman:"], + "temperature": 0.1, + "top_k": 0, + "top_p": 1.0, + "metadata": { + "user_id": "example_user_id", + }, + "stream": False, + "system": "You are a professional summarizer." + } - release_data = response.json() - assets = release_data.get('assets', []) + for attempt in range(max_retries): + try: + logging.debug("anthropic: Posting request to API") + response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) - # Find the asset with the specified prefix - asset_url = None - for asset in assets: - if re.match(f"{asset_name_prefix}.*", asset['name']): - asset_url = asset['browser_download_url'] - break + # Check if the status code indicates success + if response.status_code == 200: + logging.debug("anthropic: Post submittal successful") + response_data = response.json() + try: + summary = response_data['content'][0]['text'].strip() + logging.debug("anthropic: Summarization successful") + print("Summary processed successfully.") + return summary + except (IndexError, KeyError) as e: + logging.debug("anthropic: Unexpected data in response") + print("Unexpected response format from Claude API:", response.text) + return None + elif response.status_code == 500: # Handle internal server error specifically + logging.debug("anthropic: Internal server error") + print("Internal server error from API. Retrying may be necessary.") + time.sleep(retry_delay) + else: + logging.debug( + f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") + print(f"Failed to process summary, status code {response.status_code}: {response.text}") + return None - if not asset_url: - raise Exception(f"No asset found with prefix {asset_name_prefix}") + except RequestException as e: + logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") + if attempt < max_retries - 1: + time.sleep(retry_delay) + else: + return f"anthropic: Network error: {str(e)}" - # Download the asset - response = requests.get(asset_url) - if response.status_code != 200: - raise Exception(f"Failed to download asset: {response.status_code}") + except FileNotFoundError as e: + logging.error(f"anthropic: File not found: {file_path}") + return f"anthropic: File not found: {file_path}" + except json.JSONDecodeError as e: + logging.error(f"anthropic: Invalid JSON format in file: {file_path}") + return f"anthropic: Invalid JSON format in file: {file_path}" + except Exception as e: + logging.error(f"anthropic: Error in processing: {str(e)}") + return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" - print("Llamafile downloaded successfully.") - logging.debug("Main: Llamafile downloaded successfully.") - # Save the file - with open(output_filename, 'wb') as file: - file.write(response.content) +# Summarize with Cohere +def summarize_with_cohere(api_key, file_path, model, custom_prompt_arg): + try: + logging.debug("cohere: Loading JSON data") + with open(file_path, 'r') as file: + segments = json.load(file) - logging.debug(f"Downloaded {output_filename} from {asset_url}") - print(f"Downloaded {output_filename} from {asset_url}") + logging.debug(f"cohere: Extracting text from segments file") + text = extract_text_from_segments(segments) - # Check to see if the LLM already exists, and if not, download the LLM - print("Checking for and downloading LLM from Huggingface if needed...") - logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") - mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" - Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" - Phi_3_mini_128k_instruct_Q8_0_gguf = "Phi-3-mini-128k-instruct-Q8_0.gguf" - if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): - llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" - elif os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): - llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" - print("Model is already downloaded. Skipping download.") - pass - else: - logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") - print("Downloading LLM from Huggingface...") - time.sleep(1) - print("Gonna be a bit...") - time.sleep(1) - print("Like seriously, an 8GB file...") - time.sleep(2) - dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") - if dl_check == "N" or dl_check == "n": - exit() - else: - print("Downloading LLM from Huggingface...") - # Establish hash values for LLM models - mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" - samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" - mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" - global llm_choice - - # FIXME - llm_choice - llm_choice = 2 - llm_choice = input("Which LLM model would you like to download? 1. Mistral-7B-Instruct-v0.2-GGUF or 2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) (plain or 'custom') or MS Flavor: Phi-3-mini-128k-instruct-Q8_0.gguf \n\n\tPress '1' or '2' or '3' to specify: ") - while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": - print("Invalid choice. Please try again.") - if llm_choice == "1": - llm_download_model = "Mistral-7B-Instruct-v0.2-Q8.llamafile" - mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" - llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 - llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" - llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - elif llm_choice == "2": - llm_download_model = "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf" - samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" - llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 - llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" - llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - elif llm_choice == "3": - llm_download_model = "Phi-3-mini-128k-instruct-Q8_0.gguf" - Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 = "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193" - llm_download_model_hash = Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 - llamafile_llm_output_filename = "Phi-3-mini-128k-instruct-Q8_0.gguf" - llamafile_llm_url = "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true" - download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) - elif llm_choice == "4": # FIXME - and meta_Llama_3_8B_Instruct_Q8_0_llamafile_exists == False: - meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" - llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 - llamafile_llm_output_filename = " Meta-Llama-3-8B-Instruct.Q8_0.llamafile" - llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" - else: - print("Invalid choice. Please try again.") - return output_filename + headers = { + 'accept': 'application/json', + 'content-type': 'application/json', + 'Authorization': f'Bearer {api_key}' + } + cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + logging.debug("cohere: Prompt being sent is {cohere_prompt}") -def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5): - temp_path = dest_path + '.tmp' + data = { + "chat_history": [ + {"role": "USER", "message": cohere_prompt} + ], + "message": "Please provide a summary.", + "model": model, + "connectors": [{"id": "web-search"}] + } - for attempt in range(max_retries): - try: - # Check if a partial download exists and get its size - resume_header = {} - if os.path.exists(temp_path): - resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'} + logging.debug("cohere: Submitting request to API endpoint") + print("cohere: Submitting request to API endpoint") + response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) + response_data = response.json() + logging.debug("API Response Data: %s", response_data) - response = requests.get(url, stream=True, headers=resume_header) - response.raise_for_status() + if response.status_code == 200: + if 'text' in response_data: + summary = response_data['text'].strip() + logging.debug("cohere: Summarization successful") + print("Summary processed successfully.") + return summary + else: + logging.error("Expected data not found in API response.") + return "Expected data not found in API response." + else: + logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") + print(f"Failed to process summary, status code {response.status_code}: {response.text}") + return f"cohere: API request failed: {response.text}" - # Get the total file size from headers - total_size = int(response.headers.get('content-length', 0)) - initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0 + except Exception as e: + logging.error("cohere: Error in processing: %s", str(e)) + return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" - mode = 'ab' if 'Range' in response.headers else 'wb' - with open(temp_path, mode) as temp_file, tqdm( - total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True - ) as pbar: - for chunk in response.iter_content(chunk_size=8192): - if chunk: # filter out keep-alive new chunks - temp_file.write(chunk) - pbar.update(len(chunk)) - # Verify the checksum if provided - if expected_checksum: - if not verify_checksum(temp_path, expected_checksum): - os.remove(temp_path) - raise ValueError("Downloaded file's checksum does not match the expected checksum") +# https://console.groq.com/docs/quickstart +def summarize_with_groq(api_key, file_path, model, custom_prompt_arg): + try: + logging.debug("groq: Loading JSON data") + with open(file_path, 'r') as file: + segments = json.load(file) - # Move the file to the final destination - os.rename(temp_path, dest_path) - print("Download complete and verified!") - return dest_path + logging.debug(f"groq: Extracting text from segments file") + text = extract_text_from_segments(segments) - except Exception as e: - print(f"Attempt {attempt + 1} failed: {e}") - if attempt < max_retries - 1: - print(f"Retrying in {delay} seconds...") - time.sleep(delay) - else: - print("Max retries reached. Download failed.") - raise + headers = { + 'Authorization': f'Bearer {api_key}', + 'Content-Type': 'application/json' + } -# FIXME / IMPLEMENT FULLY -# File download verification -#mistral_7b_llamafile_instruct_v02_q8_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" -#global mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 -#mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" + groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + logging.debug("groq: Prompt being sent is {groq_prompt}") -#mistral_7b_v02_instruct_model_q8_gguf_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true" -#global mistral_7b_instruct_v0_2_q8_gguf_sha256 -#mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" + data = { + "messages": [ + { + "role": "user", + "content": groq_prompt + } + ], + "model": model + } -#samantha_instruct_model_q8_gguf_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b_bulleted-notes_GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" -#global samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 -#samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" + logging.debug("groq: Submitting request to API endpoint") + print("groq: Submitting request to API endpoint") + response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) + response_data = response.json() + logging.debug("API Response Data: %s", response_data) + if response.status_code == 200: + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("groq: Summarization successful") + print("Summarization successful.") + return summary + else: + logging.error("Expected data not found in API response.") + return "Expected data not found in API response." + else: + logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") + return f"groq: API request failed: {response.text}" -def verify_checksum(file_path, expected_checksum): - sha256_hash = hashlib.sha256() - with open(file_path, 'rb') as f: - for byte_block in iter(lambda: f.read(4096), b''): - sha256_hash.update(byte_block) - return sha256_hash.hexdigest() == expected_checksum + except Exception as e: + logging.error("groq: Error in processing: %s", str(e)) + return f"groq: Error occurred while processing summary with groq: {str(e)}" -process = None -# Function to close out llamafile process on script exit. -def cleanup_process(): - global process - if process is not None: - process.kill() - logging.debug("Main: Terminated the external process") +################################# +# +# Local Summarization -def signal_handler(sig, frame): - logging.info('Signal handler called with signal: %s', sig) - cleanup_process() - sys.exit(0) +def summarize_with_local_llm(file_path, custom_prompt_arg): + try: + logging.debug("Local LLM: Loading json data for summarization") + with open(file_path, 'r') as file: + segments = json.load(file) + logging.debug("Local LLM: Extracting text from the segments") + text = extract_text_from_segments(segments) -# FIXME - Add callout to gradio UI -def local_llm_function(): - global process - repo = "Mozilla-Ocho/llamafile" - asset_name_prefix = "llamafile-" - useros = os.name - if useros == "nt": - output_filename = "llamafile.exe" - else: - output_filename = "llamafile" - print( - "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") - print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") - print("WARNING - Hope you're comfy. Or it's already downloaded.") - time.sleep(6) - logging.debug("Main: Checking and downloading Llamafile from Github if needed...") - llamafile_path = download_latest_llamafile(repo, asset_name_prefix, output_filename) - logging.debug("Main: Llamafile downloaded successfully.") + headers = { + 'Content-Type': 'application/json' + } - # FIXME - llm_choice - global llm_choice - llm_choice = 1 - # Launch the llamafile in an external process with the specified argument - if llm_choice == 1: - arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] - elif llm_choice == 2: - arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"] - elif llm_choice == 3: - arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] - elif llm_choice == 4: - arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] # FIXME + logging.debug("Local LLM: Preparing data + prompt for submittal") + local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" + data = { + "messages": [ + { + "role": "system", + "content": "You are a professional summarizer." + }, + { + "role": "user", + "content": local_llm_prompt + } + ], + "max_tokens": 28000, # Adjust tokens as needed + } + logging.debug("Local LLM: Posting request") + response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) - try: - logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") - if useros == "nt": - launch_in_new_terminal_windows(llamafile_path, arguments) - elif useros == "posix": - launch_in_new_terminal_linux(llamafile_path, arguments) + if response.status_code == 200: + response_data = response.json() + if 'choices' in response_data and len(response_data['choices']) > 0: + summary = response_data['choices'][0]['message']['content'].strip() + logging.debug("Local LLM: Summarization successful") + print("Local LLM: Summarization successful.") + return summary + else: + logging.warning("Local LLM: Summary not found in the response data") + return "Local LLM: Summary not available" else: - launch_in_new_terminal_mac(llamafile_path, arguments) - # FIXME - pid doesn't exist in this context - #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") - atexit.register(cleanup_process, process) + logging.debug("Local LLM: Summarization failed") + print("Local LLM: Failed to process summary:", response.text) + return "Local LLM: Failed to process summary" except Exception as e: - logging.error(f"Failed to launch the process: {e}") - print(f"Failed to launch the process: {e}") + logging.debug("Local LLM: Error in processing: %s", str(e)) + print("Error occurred while processing summary with Local LLM:", str(e)) + return "Local LLM: Error occurred while processing summary" +def summarize_with_llama(api_url, file_path, token, custom_prompt): + try: + logging.debug("llama: Loading JSON data") + with open(file_path, 'r') as file: + segments = json.load(file) -def local_llm_gui_function(prompt, temperature, top_k, top_p, min_p, stream, stop, typical_p, repeat_penalty, repeat_last_n, - penalize_nl, presence_penalty, frequency_penalty, penalty_prompt, ignore_eos, system_prompt): - repo = "Mozilla-Ocho/llamafile" - asset_name_prefix = "llamafile-" - useros = os.name - if useros == "nt": - output_filename = "llamafile.exe" - else: - output_filename = "llamafile" - print( - "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") - print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") - print("WARNING - Hope you're comfy. Or it's already downloaded.") - time.sleep(6) - logging.debug("Main: Checking and downloading Llamafile from Github if needed...") - llamafile_path = download_latest_llamafile(repo, asset_name_prefix, output_filename) - logging.debug("Main: Llamafile downloaded successfully.") + logging.debug(f"llama: Extracting text from segments file") + text = extract_text_from_segments(segments) # Define this function to extract text properly - # FIXME - llm_choice - global llm_choice - llm_choice = 1 - # Launch the llamafile in an external process with the specified argument - if llm_choice == 1: - arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] - elif llm_choice == 2: - arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"] - elif llm_choice == 3: - arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] - elif llm_choice == 4: - arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] # FIXME + headers = { + 'accept': 'application/json', + 'content-type': 'application/json', + } + if len(token) > 5: + headers['Authorization'] = f'Bearer {token}' - try: - logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") - if useros == "nt": - launch_in_new_terminal_windows(llamafile_path, arguments) - elif useros == "posix": - launch_in_new_terminal_linux(llamafile_path, arguments) - else: - launch_in_new_terminal_mac(llamafile_path, arguments) - # FIXME - pid doesn't exist in this context - #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") - atexit.register(cleanup_process, process) - except Exception as e: - logging.error(f"Failed to launch the process: {e}") - print(f"Failed to launch the process: {e}") + llama_prompt = f"{text} \n\n\n\n{custom_prompt}" + logging.debug("llama: Prompt being sent is {llama_prompt}") + data = { + "prompt": llama_prompt + } + logging.debug("llama: Submitting request to API endpoint") + print("llama: Submitting request to API endpoint") + response = requests.post(api_url, headers=headers, json=data) + response_data = response.json() + logging.debug("API Response Data: %s", response_data) + if response.status_code == 200: + # if 'X' in response_data: + logging.debug(response_data) + summary = response_data['content'].strip() + logging.debug("llama: Summarization successful") + print("Summarization successful.") + return summary + else: + logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") + return f"llama: API request failed: {response.text}" -# Launch the executable in a new terminal window # FIXME - really should figure out a cleaner way of doing this... -def launch_in_new_terminal_windows(executable, args): - command = f'start cmd /k "{executable} {" ".join(args)}"' - subprocess.Popen(command, shell=True) + except Exception as e: + logging.error("llama: Error in processing: %s", str(e)) + return f"llama: Error occurred while processing summary with llama: {str(e)}" -# FIXME -def launch_in_new_terminal_linux(executable, args): - command = f'gnome-terminal -- {executable} {" ".join(args)}' - subprocess.Popen(command, shell=True) +# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate +def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt): + try: + logging.debug("kobold: Loading JSON data") + with open(file_path, 'r') as file: + segments = json.load(file) + logging.debug(f"kobold: Extracting text from segments file") + text = extract_text_from_segments(segments) -# FIXME -def launch_in_new_terminal_mac(executable, args): - command = f'open -a Terminal.app {executable} {" ".join(args)}' - subprocess.Popen(command, shell=True) + headers = { + 'accept': 'application/json', + 'content-type': 'application/json', + } + kobold_prompt = f"{text} \n\n\n\n{custom_prompt}" + logging.debug("kobold: Prompt being sent is {kobold_prompt}") -####################################################################################################################### -# Function Definitions -# + # FIXME + # Values literally c/p from the api docs.... + data = { + "max_context_length": 8096, + "max_length": 4096, + "prompt": kobold_prompt, + } -def read_paths_from_file(file_path): - """ Reads a file containing URLs or local file paths and returns them as a list. """ - paths = [] # Initialize paths as an empty list - with open(file_path, 'r') as file: - paths = [line.strip() for line in file] - return paths + logging.debug("kobold: Submitting request to API endpoint") + print("kobold: Submitting request to API endpoint") + response = requests.post(api_url, headers=headers, json=data) + response_data = response.json() + logging.debug("kobold: API Response Data: %s", response_data) + if response.status_code == 200: + if 'results' in response_data and len(response_data['results']) > 0: + summary = response_data['results'][0]['text'].strip() + logging.debug("kobold: Summarization successful") + print("Summarization successful.") + return summary + else: + logging.error("Expected data not found in API response.") + return "Expected data not found in API response." + else: + logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") + return f"kobold: API request failed: {response.text}" -def process_path(path): - """ Decides whether the path is a URL or a local file and processes accordingly. """ - if path.startswith('http'): - logging.debug("file is a URL") - # For YouTube URLs, modify to download and extract info - return get_youtube(path) - elif os.path.exists(path): - logging.debug("File is a path") - # For local files, define a function to handle them - return process_local_file(path) - else: - logging.error(f"Path does not exist: {path}") - return None + except Exception as e: + logging.error("kobold: Error in processing: %s", str(e)) + return f"kobold: Error occurred while processing summary with kobold: {str(e)}" -# FIXME -def process_local_file(file_path): - logging.info(f"Processing local file: {file_path}") - title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) - info_dict = {'title': title} - logging.debug(f"Creating {title} directory...") - download_path = create_download_directory(title) - logging.debug(f"Converting '{title}' to an audio file (wav).") - audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction - logging.debug(f"'{title}' successfully converted to an audio file (wav).") - return download_path, info_dict, audio_file +# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API +def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt): + try: + logging.debug("ooba: Loading JSON data") + with open(file_path, 'r') as file: + segments = json.load(file) + logging.debug(f"ooba: Extracting text from segments file\n\n\n") + text = extract_text_from_segments(segments) + logging.debug(f"ooba: Finished extracting text from segments file") -def read_paths_from_file(file_path: str) -> List[str]: - """Read paths from a text file.""" - with open(file_path, 'r') as file: - paths = file.readlines() - return [path.strip() for path in paths] + headers = { + 'accept': 'application/json', + 'content-type': 'application/json', + } + # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It + # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are + # my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable + ooba_prompt = "{text}\n\n\n\n{custom_prompt}" + logging.debug("ooba: Prompt being sent is {ooba_prompt}") -# -# -####################################################################################################################### + data = { + "mode": "chat", + "character": "Example", + "messages": [{"role": "user", "content": ooba_prompt}] + } -# -# -####################################################################################################################### + logging.debug("ooba: Submitting request to API endpoint") + print("ooba: Submitting request to API endpoint") + response = requests.post(api_url, headers=headers, json=data, verify=False) + logging.debug("ooba: API Response Data: %s", response) + if response.status_code == 200: + response_data = response.json() + summary = response.json()['choices'][0]['message']['content'] + logging.debug("ooba: Summarization successful") + print("Summarization successful.") + return summary + else: + logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") + return f"ooba: API request failed with status code {response.status_code}: {response.text}" -####################################################################################################################### -# Chunking-related Techniques & Functions -# -# -# FIXME -# -# -####################################################################################################################### + except Exception as e: + logging.error("ooba: Error in processing: %s", str(e)) + return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" -####################################################################################################################### -# Tokenization-related Functions -# -# +# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs. +def summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg): + vllm_client = OpenAI( + base_url=vllm_api_url, + api_key=vllm_api_key_function_arg + ) -# FIXME + custom_prompt = vllm_custom_prompt_function_arg -# -# -####################################################################################################################### + completion = client.chat.completions.create( + model=llm_model, + messages=[ + {"role": "system", "content": "You are a professional summarizer."}, + {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"} + ] + ) + vllm_summary = completion.choices[0].message.content + return vllm_summary -####################################################################################################################### -# Website-related Techniques & Functions -# -# +# FIXME - Install is more trouble than care to deal with right now. +def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt): + model = tabby_model + headers = { + 'Authorization': f'Bearer {tabby_api_key}', + 'Content-Type': 'application/json' + } + data = { + 'text': text, + 'model': 'tabby' # Specify the model if needed + } + try: + response = requests.post('https://api.tabbyapi.com/summarize', headers=headers, json=data) + response.raise_for_status() + summary = response.json().get('summary', '') + return summary + except requests.exceptions.RequestException as e: + logger.error(f"Error summarizing with TabbyAPI: {e}") + return "Error summarizing with TabbyAPI." -# -# -####################################################################################################################### + +def save_summary_to_file(summary, file_path): + logging.debug("Now saving summary to file...") + summary_file_path = file_path.replace('.segments.json', '_summary.txt') + logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") + with open(summary_file_path, 'w') as file: + file.write(summary) + logging.info(f"Summary saved to file: {summary_file_path}") + + +summarizers: Dict[str, Callable[[str, str], str]] = { + 'tabbyapi': summarize_with_tabbyapi, + 'openai': summarize_with_openai, + 'anthropic': summarize_with_claude, + 'cohere': summarize_with_cohere, + 'groq': summarize_with_groq, + 'llama': summarize_with_llama, + 'kobold': summarize_with_kobold, + 'oobabooga': summarize_with_oobabooga + # Add more APIs here as needed +} -####################################################################################################################### -# Summarizers -# -# Function List -# 1. extract_text_from_segments(segments: List[Dict]) -> str -# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) -# 3. summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) -# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) -# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) -# -################################# -# Local Summarization -# -# Function List # -# 1. summarize_with_local_llm(file_path, custom_prompt_arg) -# 2. summarize_with_llama(api_url, file_path, token, custom_prompt) -# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt) -# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt) -# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) -# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) -# 7. save_summary_to_file(summary, file_path) # ####################################################################################################################### @@ -3517,7 +2130,16 @@ def read_paths_from_file(file_path: str) -> List[str]: # Summarization with Detail # -# FIXME - see 'Old_Chunking_Lib.py' +def summarize_with_detail_openai(text, detail, verbose=False): + summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True) + print(len(openai_tokenize(summary_with_detail_variable))) + return summary_with_detail_variable + + +def summarize_with_detail_recursive_openai(text, detail, verbose=False): + summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True) + print(summary_with_recursive_summarization) + # # @@ -3527,16 +2149,73 @@ def read_paths_from_file(file_path: str) -> List[str]: ####################################################################################################################### # Gradio UI # -####################################################################################################################### -# Function Definitions -# # Only to be used when configured with Gradio for HF Space +def summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt): + logging.debug(f"huggingface: Summarization process starting...") + client = InferenceClient() + + #model = "microsoft/Phi-3-mini-128k-instruct" + model = "CohereForAI/c4ai-command-r-plus" + API_URL = f"https://api-inference.huggingface.co/models/{model}" + headers = {"Authorization": f"Bearer {huggingface_api_key}"} + + client = InferenceClient(model=f"{model}", token=f"{huggingface_api_key}") + + response = client.post(json={"inputs": "The goal of life is [MASK]."}, model="bert-base-uncased") + + with open(json_file_path, 'r') as file: + segments = json.load(file) + text = ''.join([segment['text'] for segment in segments]) + + hf_prompt = text + "\n\n\n\n" + custom_prompt + + if huggingface_api_key == "": + api_key = os.getenv(HF_TOKEN) + logging.debug("HUGGINGFACE API KEY CHECK: " + huggingface_api_key) + try: + logging.debug("huggingface: Loading json data for summarization") + with open(json_file_path, 'r') as file: + segments = json.load(file) + + logging.debug("huggingface: Extracting text from the segments") + text = ' '.join([segment['text'] for segment in segments]) + + #api_key = os.getenv('HF_TOKEN').replace('"', '') + logging.debug("HUGGINGFACE API KEY CHECK #2: " + huggingface_api_key) + + logging.debug("huggingface: Submitting request...") + response = client.text_generation(prompt=hf_prompt, max_new_tokens=4096) + if response is not None: + return response + #if response == FIXME: + #logging.debug("huggingface: Summarization successful") + #print("Summarization successful.") + #return response + #elif Bad Stuff: + # logging.debug(f"huggingface: Model is currently loading...{response.status_code}: {response.text}") + # global waiting_summary + # pretty_json = json.dumps(json.loads(response.text), indent=4) # Prettify JSON + # waiting_summary = f" {pretty_json} " # Use prettified JSON + # return waiting_summary + else: + logging.error(f"huggingface: Summarization failed with status code {response}") + return f"Failed to process summary, huggingface library error: {response}" + except Exception as e: + logging.error("huggingface: Error in processing: %s", str(e)) + print(f"Error occurred while processing summary with huggingface: {str(e)}") + return None + + # FIXME + # This is here for gradio authentication + # Its just not setup. + # def same_auth(username, password): + # return username == password -def format_transcription(transcription_result_arg): - if transcription_result_arg: - json_data = transcription_result_arg['transcription'] +def format_transcription(transcription_result): + if transcription_result: + json_data = transcription_result['transcription'] return json.dumps(json_data, indent=2) else: return "" @@ -3563,243 +2242,62 @@ def search_media(query, fields, keyword, page): return str(e) -# FIXME - code for the 're-prompt' functionality -#- Change to use 'check_api()' function - also, create 'check_api()' function -# def ask_question(transcription, question, api_name, api_key): -# if not question.strip(): -# return "Please enter a question." -# -# prompt = f"""Transcription:\n{transcription} -# -# Given the above transcription, please answer the following:\n\n{question}""" -# -# # FIXME - Refactor main API checks so they're their own function - api_check() -# # Call api_check() function here -# -# if api_name.lower() == "openai": -# openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) -# headers = { -# 'Authorization': f'Bearer {openai_api_key}', -# 'Content-Type': 'application/json' -# } -# if openai_model: -# pass -# else: -# openai_model = 'gpt-4-turbo' -# data = { -# "model": openai_model, -# "messages": [ -# { -# "role": "system", -# "content": "You are a helpful assistant that answers questions based on the given " -# "transcription and summary." -# }, -# { -# "role": "user", -# "content": prompt -# } -# ], -# "max_tokens": 150000, -# "temperature": 0.1 -# } -# response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) -# -# if response.status_code == 200: -# answer = response.json()['choices'][0]['message']['content'].strip() -# return answer -# else: -# return "Failed to process the question." -# else: -# return "Question answering is currently only supported with the OpenAI API." - - -# For the above 'ask_question()' function, the following APIs are supported: -# summarizers: Dict[str, Callable[[str, str], str]] = { -# 'tabbyapi': summarize_with_tabbyapi, -# 'openai': summarize_with_openai, -# 'anthropic': summarize_with_claude, -# 'cohere': summarize_with_cohere, -# 'groq': summarize_with_groq, -# 'llama': summarize_with_llama, -# 'kobold': summarize_with_kobold, -# 'oobabooga': summarize_with_oobabooga, -# 'local-llm': summarize_with_local_llm, -# 'huggingface': summarize_with_huggingface, -# 'openrouter': summarize_with_openrouter -# # Add more APIs here as needed -# } - -######################################################################### - - -# FIXME - Move to 'Web_UI_Lib.py' -# Gradio Search Function-related stuff -def display_details(media_id): - if media_id: - details = display_item_details(media_id) - details_html = "" - for detail in details: - details_html += f"

Prompt:

{detail[0]}

" - details_html += f"

Summary:

{detail[1]}

" - details_html += f"

Transcription:

{detail[2]}

" - return details_html - return "No details available." - -def fetch_items_by_title_or_url(search_query: str, search_type: str): - try: - with db.get_connection() as conn: - cursor = conn.cursor() - if search_type == 'Title': - cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',)) - elif search_type == 'URL': - cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',)) - results = cursor.fetchall() - return results - except sqlite3.Error as e: - raise DatabaseError(f"Error fetching items by {search_type}: {e}") - - -def fetch_items_by_keyword(search_query: str): - try: - with db.get_connection() as conn: - cursor = conn.cursor() - cursor.execute(""" - SELECT m.id, m.title, m.url - FROM Media m - JOIN MediaKeywords mk ON m.id = mk.media_id - JOIN Keywords k ON mk.keyword_id = k.id - WHERE k.keyword LIKE ? - """, (f'%{search_query}%',)) - results = cursor.fetchall() - return results - except sqlite3.Error as e: - raise DatabaseError(f"Error fetching items by keyword: {e}") - -def fetch_items_by_content(search_query: str): - try: - with db.get_connection() as conn: - cursor = conn.cursor() - cursor.execute("SELECT id, title, url FROM Media WHERE content LIKE ?", (f'%{search_query}%',)) - results = cursor.fetchall() - return results - except sqlite3.Error as e: - raise DatabaseError(f"Error fetching items by content: {e}") +# FIXME - Change to use 'check_api()' function - also, create 'check_api()' function +def ask_question(transcription, question, api_name, api_key): + if not question.strip(): + return "Please enter a question." + prompt = f"""Transcription:\n{transcription} -def fetch_item_details(media_id: int): - try: - with db.get_connection() as conn: - cursor = conn.cursor() - cursor.execute("SELECT prompt, summary FROM MediaModifications WHERE media_id = ?", (media_id,)) - prompt_summary_results = cursor.fetchall() - - cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,)) - content_result = cursor.fetchone() - content = content_result[0] if content_result else "" - - return prompt_summary_results, content - except sqlite3.Error as e: - raise DatabaseError(f"Error fetching item details: {e}") - -def browse_items(search_query, search_type): - if search_type == 'Keyword': - results = fetch_items_by_keyword(search_query) - elif search_type == 'Content': - results = fetch_items_by_content(search_query) - else: - results = fetch_items_by_title_or_url(search_query, search_type) - return results + Given the above transcription, please answer the following:\n\n{question}""" -def display_item_details(media_id): - prompt_summary_results, content = fetch_item_details(media_id) - content_section = f"

Transcription:

{content}

" - prompt_summary_section = "" - for prompt, summary in prompt_summary_results: - prompt_summary_section += f"

Prompt:

{prompt}

" - prompt_summary_section += f"

Summary:

{summary}


" - return prompt_summary_section, content_section - -def update_dropdown(search_query, search_type): - results = browse_items(search_query, search_type) - item_options = [f"{item[1]} ({item[2]})" for item in results] - item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results} # Map item display to media ID - return gr.Dropdown.update(choices=item_options), item_mapping - -def get_media_id(selected_item, item_mapping): - return item_mapping.get(selected_item) - -def update_detailed_view(selected_item, item_mapping): - media_id = get_media_id(selected_item, item_mapping) - if media_id: - prompt_summary_html, content_html = display_item_details(media_id) - return gr.update(value=prompt_summary_html), gr.update(value=content_html) - return gr.update(value="No details available"), gr.update(value="No details available") - -def update_prompt_dropdown(): - prompt_names = list_prompts() - return gr.update(choices=prompt_names) - -def display_prompt_details(selected_prompt): - if selected_prompt: - details = fetch_prompt_details(selected_prompt) - if details: - details_str = f"

Details:

{details[0]}

" - system_str = f"

System:

{details[1]}

" - user_str = f"

User:

{details[2]}

" if details[2] else "" - return details_str + system_str + user_str - return "No details available." - -def insert_prompt_to_db(title, description, system_prompt, user_prompt): - try: - conn = sqlite3.connect('prompts.db') - cursor = conn.cursor() - cursor.execute( - "INSERT INTO Prompts (name, details, system, user) VALUES (?, ?, ?, ?)", - (title, description, system_prompt, user_prompt) - ) - conn.commit() - conn.close() - return "Prompt added successfully!" - except sqlite3.Error as e: - return f"Error adding prompt: {e}" - -def display_search_results(query): - if not query.strip(): - return "Please enter a search query." - - results = search_prompts(query) - - # Debugging: Print the results to the console to see what is being returned - print(f"Processed search results for query '{query}': {results}") - - if results: - result_md = "## Search Results:\n" - for result in results: - # Debugging: Print each result to see its format - print(f"Result item: {result}") - - if len(result) == 2: - name, details = result - result_md += f"**Title:** {name}\n\n**Description:** {details}\n\n---\n" - else: - result_md += "Error: Unexpected result format.\n\n---\n" - return result_md - return "No results found." + # FIXME - Refactor main API checks so they're their own function - api_check() + # Call api_check() function here + if api_name.lower() == "openai": + openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None) + headers = { + 'Authorization': f'Bearer {openai_api_key}', + 'Content-Type': 'application/json' + } + if openai_model: + pass + else: + openai_model = 'gpt-4-turbo' + data = { + "model": openai_model, + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant that answers questions based on the given " + "transcription and summary." + }, + { + "role": "user", + "content": prompt + } + ], + "max_tokens": 150000, + "temperature": 0.1 + } + response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) + if response.status_code == 200: + answer = response.json()['choices'][0]['message']['content'].strip() + return answer + else: + return "Failed to process the question." + else: + return "Question answering is currently only supported with the OpenAI API." -# -# End of Gradio Search Function-related stuff -############################################################ +import gradio as gr -# def gradio UI def launch_ui(demo_mode=False): whisper_models = ["small.en", "medium.en", "large"] - # Set theme value with https://www.gradio.app/guides/theming-guide - 'theme=' - my_theme = gr.Theme.from_hub("gradio/seafoam") - with gr.Blocks(theme=my_theme) as iface: + + with gr.Blocks() as iface: # Tab 1: Audio Transcription + Summarization with gr.Tab("Audio Transcription + Summarization"): @@ -3809,19 +2307,11 @@ def launch_ui(demo_mode=False): label="Light/Dark Mode Toggle (Toggle to change UI color scheme)") # UI Mode toggle switch - ui_frontpage_mode_toggle = gr.Radio(choices=["Simple List", "Advanced List"], value="Simple List", - label="UI Mode Options Toggle(Toggle to show a few/all options)") - - # Add the new toggle switch - chunk_summarization_toggle = gr.Radio(choices=["Non-Chunked", "Chunked-Summarization"], - value="Non-Chunked", - label="Summarization Mode") + ui_mode_toggle = gr.Radio(choices=["Simple", "Advanced"], value="Simple", + label="UI Mode (Toggle to show all options)") # URL input is always visible - url_input = gr.Textbox(label="URL (Mandatory) --> Playlist URLs will be stripped and only the linked video" - " will be downloaded)", placeholder="Enter the video URL here") -# url_input = gr.Textbox(label="URL (Mandatory) --> Playlist URLs will be stripped and only the linked video" -# " will be downloaded)", placeholder="Enter the video URL here") + url_input = gr.Textbox(label="URL (Mandatory)", placeholder="Enter the video URL here") # Inputs to be shown or hidden num_speakers_input = gr.Number(value=2, label="Number of Speakers(Optional - Currently has no effect)", @@ -3831,7 +2321,7 @@ def launch_ui(demo_mode=False): visible=False) custom_prompt_input = gr.Textbox( label="Custom Prompt (Customize your summarization, or ask a question about the video and have it " - "answered)\n Does not work against the summary currently.", + "answered)", placeholder="Above is the transcript of a video. Please read " "through the transcript carefully. Identify the main topics that are discussed over the " "course of the transcript. Then, summarize the key points about each main topic in a " @@ -3842,14 +2332,13 @@ def launch_ui(demo_mode=False): offset_input = gr.Number(value=0, label="Offset (Seconds into the video to start transcribing at)", visible=False) api_name_input = gr.Dropdown( - choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "OpenRouter", "Llama.cpp", - "Kobold", "Ooba", "HuggingFace"], + choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "Llama.cpp", "Kobold", "Ooba", "HuggingFace"], value=None, - label="API Name (Mandatory) --> Unless you just want a Transcription", visible=True) - api_key_input = gr.Textbox( - label="API Key (Mandatory) --> Unless you're running a local model/server OR have no API selected", - placeholder="Enter your API key here; Ignore if using Local API or Built-in API('Local-LLM')", + label="(Optional) The LLM endpoint to have summarize your request. If you're running a local model, select 'Local-LLM'", visible=True) + api_key_input = gr.Textbox(label="API Key (Mandatory unless you're running a local model/server/no API selected)", + placeholder="Enter your API key here; Ignore if using Local API or Built-in API('Local-LLM')", + visible=True) vad_filter_input = gr.Checkbox(label="VAD Filter (WIP)", value=False, visible=False) rolling_summarization_input = gr.Checkbox(label="Enable Rolling Summarization", value=False, @@ -3868,110 +2357,43 @@ def launch_ui(demo_mode=False): question_box_input = gr.Textbox(label="Question", placeholder="Enter a question to ask about the transcription", visible=False) - # Add the additional input components - chunk_text_by_words_checkbox = gr.Checkbox(label="Chunk Text by Words", value=False, visible=False) - max_words_input = gr.Number(label="Max Words", value=0, precision=0, visible=False) - - chunk_text_by_sentences_checkbox = gr.Checkbox(label="Chunk Text by Sentences", value=False, - visible=False) - max_sentences_input = gr.Number(label="Max Sentences", value=0, precision=0, visible=False) - - chunk_text_by_paragraphs_checkbox = gr.Checkbox(label="Chunk Text by Paragraphs", value=False, - visible=False) - max_paragraphs_input = gr.Number(label="Max Paragraphs", value=0, precision=0, visible=False) - - chunk_text_by_tokens_checkbox = gr.Checkbox(label="Chunk Text by Tokens", value=False, visible=False) - max_tokens_input = gr.Number(label="Max Tokens", value=0, precision=0, visible=False) + chunk_summarization_input = gr.Checkbox(label="Time-based Chunk Summarization", + value=False, + visible=False) + chunk_duration_input = gr.Number(label="Chunk Duration (seconds)", value=DEFAULT_CHUNK_DURATION, + visible=False) + words_per_second_input = gr.Number(label="Words per Second", value=WORDS_PER_SECOND, + visible=False) + # time_based_summarization_input = gr.Checkbox(label="Enable Time-based Summarization", value=False, + # visible=False) time_chunk_duration_input = gr.Number(label="Time Chunk Duration (seconds)", value=60, + # visible=False) llm_model_input = gr.Dropdown(label="LLM Model", choices=["gpt-4o", "gpt-4-turbo", + # "claude-3-sonnet-20240229", "command-r-plus", "CohereForAI/c4ai-command-r-plus", "llama3-70b-8192"], + # value="gpt-4o", visible=False) inputs = [ num_speakers_input, whisper_model_input, custom_prompt_input, offset_input, api_name_input, api_key_input, vad_filter_input, download_video_input, download_audio_input, rolling_summarization_input, detail_level_input, question_box_input, keywords_input, - chunk_text_by_words_checkbox, max_words_input, chunk_text_by_sentences_checkbox, - max_sentences_input, chunk_text_by_paragraphs_checkbox, max_paragraphs_input, - chunk_text_by_tokens_checkbox, max_tokens_input + chunk_summarization_input, chunk_duration_input, words_per_second_input ] - - all_inputs = [url_input] + inputs + # inputs_1 = [ + # url_input_1, + # num_speakers_input, whisper_model_input, custom_prompt_input_1, offset_input, api_name_input_1, + # api_key_input_1, vad_filter_input, download_video_input, download_audio_input, + # rolling_summarization_input, detail_level_input, question_box_input, keywords_input_1, + # chunk_summarization_input, chunk_duration_input, words_per_second_input, + # time_based_summarization_input, time_chunk_duration_input, llm_model_input + # ] outputs = [ gr.Textbox(label="Transcription (Resulting Transcription from your input URL)"), gr.Textbox(label="Summary or Status Message (Current status of Summary or Summary itself)"), gr.File(label="Download Transcription as JSON (Download the Transcription as a file)"), gr.File(label="Download Summary as Text (Download the Summary as a file)"), - gr.File(label="Download Video (Download the Video as a file)", visible=True), + gr.File(label="Download Video (Download the Video as a file)", visible=False), gr.File(label="Download Audio (Download the Audio as a file)", visible=False), ] - # Function to toggle visibility of advanced inputs - def toggle_frontpage_ui(mode): - visible_simple = mode == "Simple List" - visible_advanced = mode == "Advanced List" - - return [ - gr.update(visible=True), # URL input should always be visible - gr.update(visible=visible_advanced), # num_speakers_input - gr.update(visible=visible_advanced), # whisper_model_input - gr.update(visible=True), # custom_prompt_input - gr.update(visible=visible_advanced), # offset_input - gr.update(visible=True), # api_name_input - gr.update(visible=True), # api_key_input - gr.update(visible=visible_advanced), # vad_filter_input - gr.update(visible=visible_advanced), # download_video_input - gr.update(visible=visible_advanced), # download_audio_input - gr.update(visible=visible_advanced), # rolling_summarization_input - gr.update(visible_advanced), # detail_level_input - gr.update(visible_advanced), # question_box_input - gr.update(visible=True), # keywords_input - gr.update(visible_advanced), # chunk_text_by_words_checkbox - gr.update(visible_advanced), # max_words_input - gr.update(visible_advanced), # chunk_text_by_sentences_checkbox - gr.update(visible_advanced), # max_sentences_input - gr.update(visible_advanced), # chunk_text_by_paragraphs_checkbox - gr.update(visible_advanced), # max_paragraphs_input - gr.update(visible_advanced), # chunk_text_by_tokens_checkbox - gr.update(visible_advanced), # max_tokens_input - ] - - def toggle_chunk_summarization(mode): - visible = (mode == "Chunked-Summarization") - return [ - gr.update(visible=visible), # chunk_text_by_words_checkbox - gr.update(visible=visible), # max_words_input - gr.update(visible=visible), # chunk_text_by_sentences_checkbox - gr.update(visible=visible), # max_sentences_input - gr.update(visible=visible), # chunk_text_by_paragraphs_checkbox - gr.update(visible=visible), # max_paragraphs_input - gr.update(visible=visible), # chunk_text_by_tokens_checkbox - gr.update(visible=visible) # max_tokens_input - ] - - chunk_summarization_toggle.change(fn=toggle_chunk_summarization, inputs=chunk_summarization_toggle, - outputs=[ - chunk_text_by_words_checkbox, max_words_input, - chunk_text_by_sentences_checkbox, max_sentences_input, - chunk_text_by_paragraphs_checkbox, max_paragraphs_input, - chunk_text_by_tokens_checkbox, max_tokens_input - ]) - - def start_llamafile(prompt, temperature, top_k, top_p, min_p, stream, stop, typical_p, repeat_penalty, - repeat_last_n, - penalize_nl, presence_penalty, frequency_penalty, penalty_prompt, ignore_eos, - system_prompt): - # Code to start llamafile with the provided configuration - local_llm_gui_function(prompt, temperature, top_k, top_p, min_p, stream, stop, typical_p, - repeat_penalty, - repeat_last_n, - penalize_nl, presence_penalty, frequency_penalty, penalty_prompt, ignore_eos, - system_prompt) - # FIXME - return "Llamafile started" - - def stop_llamafile(): - # Code to stop llamafile - # ... - return "Llamafile stopped" - def toggle_light(mode): if mode == "Dark": return """ @@ -4059,21 +2481,27 @@ def launch_ui(demo_mode=False): # Set the event listener for the Light/Dark mode toggle switch theme_toggle.change(fn=toggle_light, inputs=theme_toggle, outputs=gr.HTML()) - ui_frontpage_mode_toggle.change(fn=toggle_frontpage_ui, inputs=ui_frontpage_mode_toggle, outputs=inputs) + # Function to toggle visibility of advanced inputs + def toggle_ui(mode): + visible = (mode == "Advanced") + return [ + gr.update(visible=True) if i in [0, 3, 5, 6, 13] else gr.update(visible=visible) + for i in range(len(inputs)) + ] + + # Set the event listener for the UI Mode toggle switch + ui_mode_toggle.change(fn=toggle_ui, inputs=ui_mode_toggle, outputs=inputs) # Combine URL input and inputs lists all_inputs = [url_input] + inputs - # lets try embedding the theme here - FIXME? gr.Interface( fn=process_url, inputs=all_inputs, outputs=outputs, title="Video Transcription and Summarization", description="Submit a video URL for transcription and summarization. Ensure you input all necessary " - "information including API keys.", - theme='freddyaboulton/dracula_revamped', - allow_flagging="never" + "information including API keys." ) # Tab 2: Scrape & Summarize Articles/Websites @@ -4087,8 +2515,7 @@ def launch_ui(demo_mode=False): lines=3 ) api_name_input = gr.Dropdown( - choices=[None, "huggingface", "openrouter", "openai", "anthropic", "cohere", "groq", "llama", "kobold", - "ooba"], + choices=[None, "huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value=None, label="API Name (Mandatory for Summarization)" ) @@ -4118,211 +2545,60 @@ def launch_ui(demo_mode=False): gr.Markdown("Will ingest documents and store into SQLite DB") gr.Markdown("RAG here we come....:/") - # Function to update the visibility of the UI elements for Llamafile Settings - def toggle_advanced_llamafile_mode(is_advanced): - if is_advanced: - return [gr.update(visible=True)] * 14 - else: - return [gr.update(visible=False)] * 11 + [gr.update(visible=True)] * 3 - - with gr.Blocks() as search_interface: - with gr.Tab("Search & Detailed Entry View"): - search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...") - search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title", - label="Search By") - - search_button = gr.Button("Search") - items_output = gr.Dropdown(label="Select Item", choices=[]) - item_mapping = gr.State({}) - - search_button.click(fn=update_dropdown, inputs=[search_query_input, search_type_input], - outputs=[items_output, item_mapping]) - - prompt_summary_output = gr.HTML(label="Prompt & Summary", visible=True) - content_output = gr.HTML(label="Content", visible=True) - items_output.change(fn=update_detailed_view, inputs=[items_output, item_mapping], - outputs=[prompt_summary_output, content_output]) - - with gr.Tab("View Prompts"): - with gr.Column(): - prompt_dropdown = gr.Dropdown(label="Select Prompt", choices=[]) - prompt_details_output = gr.HTML() - - prompt_dropdown.change( - fn=display_prompt_details, - inputs=prompt_dropdown, - outputs=prompt_details_output - ) - - prompt_list_button = gr.Button("List Prompts") - prompt_list_button.click( - fn=update_prompt_dropdown, - outputs=prompt_dropdown - ) - # FIXME - with gr.Tab("Search Prompts"): - with gr.Column(): - search_query_input = gr.Textbox(label="Search Query (It's broken)", placeholder="Enter your search query...") - search_results_output = gr.Markdown() - - search_button = gr.Button("Search Prompts") - search_button.click( - fn=display_search_results, - inputs=[search_query_input], - outputs=[search_results_output] - ) - - search_query_input.change( - fn=display_search_results, - inputs=[search_query_input], - outputs=[search_results_output] - ) - - with gr.Tab("Add Prompts"): - gr.Markdown("### Add Prompt") - title_input = gr.Textbox(label="Title", placeholder="Enter the prompt title") - description_input = gr.Textbox(label="Description", placeholder="Enter the prompt description", lines=3) - system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter the system prompt", lines=3) - user_prompt_input = gr.Textbox(label="User Prompt", placeholder="Enter the user prompt", lines=3) - add_prompt_button = gr.Button("Add Prompt") - add_prompt_output = gr.HTML() - - add_prompt_button.click( - fn=add_prompt, - inputs=[title_input, description_input, system_prompt_input, user_prompt_input], - outputs=add_prompt_output - ) - - with gr.Blocks() as llamafile_interface: - with gr.Tab("Llamafile Settings"): - gr.Markdown("Settings for Llamafile") - - # Toggle switch for Advanced/Simple mode - advanced_mode_toggle = gr.Checkbox( - label="Advanced Mode - Click->Click again to only show 'simple' settings. Is a known bug...", - value=False) - - # Start/Stop buttons - start_button = gr.Button("Start Llamafile") - stop_button = gr.Button("Stop Llamafile") - - # Configuration inputs - prompt_input = gr.Textbox(label="Prompt", value="") - temperature_input = gr.Number(label="Temperature", value=0.8) - top_k_input = gr.Number(label="Top K", value=40) - top_p_input = gr.Number(label="Top P", value=0.95) - min_p_input = gr.Number(label="Min P", value=0.05) - stream_input = gr.Checkbox(label="Stream", value=False) - stop_input = gr.Textbox(label="Stop", value="[]") - typical_p_input = gr.Number(label="Typical P", value=1.0) - repeat_penalty_input = gr.Number(label="Repeat Penalty", value=1.1) - repeat_last_n_input = gr.Number(label="Repeat Last N", value=64) - penalize_nl_input = gr.Checkbox(label="Penalize New Lines", value=False) - presence_penalty_input = gr.Number(label="Presence Penalty", value=0.0) - frequency_penalty_input = gr.Number(label="Frequency Penalty", value=0.0) - penalty_prompt_input = gr.Textbox(label="Penalty Prompt", value="") - ignore_eos_input = gr.Checkbox(label="Ignore EOS", value=False) - system_prompt_input = gr.Textbox(label="System Prompt", value="") - - # Output display - output_display = gr.Textbox(label="Llamafile Output") - - # Function calls local_llm_gui_function() with the provided arguments - # local_llm_gui_function() is found in 'Local_LLM_Inference_Engine_Lib.py' file - start_button.click(start_llamafile, - inputs=[prompt_input, temperature_input, top_k_input, top_p_input, min_p_input, - stream_input, stop_input, typical_p_input, repeat_penalty_input, - repeat_last_n_input, penalize_nl_input, presence_penalty_input, - frequency_penalty_input, penalty_prompt_input, ignore_eos_input, - system_prompt_input], outputs=output_display) - - # This function is not implemented yet... - # FIXME - Implement this function - stop_button.click(stop_llamafile, outputs=output_display) - - # Toggle event for Advanced/Simple mode - advanced_mode_toggle.change(toggle_advanced_llamafile_mode, - inputs=[advanced_mode_toggle], - outputs=[top_k_input, top_p_input, min_p_input, stream_input, stop_input, - typical_p_input, repeat_penalty_input, repeat_last_n_input, - penalize_nl_input, presence_penalty_input, frequency_penalty_input, - penalty_prompt_input, ignore_eos_input]) - - with gr.Tab("Llamafile Chat Interface"): - gr.Markdown("Page to interact with Llamafile Server (iframe to Llamafile server port)") - # Define the HTML content with the iframe - html_content = """ - - - - - - Llama.cpp Server Chat Interface - Loaded from http://127.0.0.1:8080 - - - - - - - """ - gr.HTML(html_content) - - - + with gr.Tab("Sample Prompts/Questions"): + gr.Markdown("Plan to put Sample prompts/questions here") + gr.Markdown("Fabric prompts/live UI?") + # Searchable list + with gr.Row(): + search_box = gr.Textbox(label="Search prompts", placeholder="Type to filter prompts") + search_result = gr.Textbox(label="Matching prompts", interactive=False) + search_box.change(search_prompts, inputs=search_box, outputs=search_result) - export_keywords_interface = gr.Interface( - fn=export_keywords_to_csv, - inputs=[], - outputs=[gr.File(label="Download Exported Keywords"), gr.Textbox(label="Status")], - title="Export Keywords", - description="Export all keywords in the database to a CSV file." + # Interactive list + with gr.Row(): + prompt_selector = gr.Radio(choices=all_prompts, label="Select a prompt") + selected_output = gr.Textbox(label="Selected prompt") + prompt_selector.change(handle_prompt_selection, inputs=prompt_selector, outputs=selected_output) + + # Categorized display + with gr.Accordion("Category 1"): + gr.Markdown("\n".join(prompts_category_1)) + with gr.Accordion("Category 2"): + gr.Markdown("\n".join(prompts_category_2)) + + # Gradio interface setup with tabs + search_tab = gr.Interface( + fn=search_and_display, + inputs=[ + gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), + gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content", "URL", "Type", "Author"], + value=["Title"]), + gr.Textbox(label="Keyword", placeholder="Enter keywords here..."), + gr.Number(label="Page", value=1, precision=0), + gr.Checkbox(visible=False) # Dummy input to match the expected number of arguments + ], + outputs=[ + gr.Dataframe(label="Search Results"), + gr.Textbox(label="Message", visible=False) + ], + title="Search Media Summaries", + description="Search for media (documents, videos, articles) and their summaries in the database. Use keywords for better filtering.", + allow_flagging="never" ) - # Gradio interface for importing data - def import_data(file): - # Placeholder for actual import functionality - return "Data imported successfully" - - import_interface = gr.Interface( - fn=import_data, - inputs=gr.File(label="Upload file for import"), + export_tab = gr.Interface( + fn=export_to_csv, + inputs=[ + gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), + gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]), + gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )", + placeholder="Enter keywords here..."), + gr.Number(label="Page", value=1, precision=0), + gr.Number(label="Results per File", value=1000, precision=0) + ], outputs="text", - title="Import Data", - description="Import data into the database from a CSV file." - ) - - import_export_tab = gr.TabbedInterface( - [gr.TabbedInterface( - [gr.Interface( - fn=export_to_csv, - inputs=[ - gr.Textbox(label="Search Query", placeholder="Enter your search query here..."), - gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]), - gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )", - placeholder="Enter keywords here..."), - gr.Number(label="Page", value=1, precision=0), - gr.Number(label="Results per File", value=1000, precision=0) - ], - outputs="text", - title="Export Search Results to CSV", - description="Export the search results to a CSV file." - ), - export_keywords_interface], - ["Export Search Results", "Export Keywords"] - ), - import_interface], - ["Export", "Import"] + title="Export Search Results to CSV", + description="Export the search results to a CSV file." ) keyword_add_interface = gr.Interface( @@ -4343,284 +2619,33 @@ def launch_ui(demo_mode=False): allow_flagging="never" ) - browse_keywords_interface = gr.Interface( - fn=keywords_browser_interface, - inputs=[], - outputs="markdown", - title="Browse Keywords", - description="View all keywords currently stored in the database." - ) - keyword_tab = gr.TabbedInterface( - [browse_keywords_interface, keyword_add_interface, keyword_delete_interface], - ["Browse Keywords", "Add Keywords", "Delete Keywords"] - ) - - def ensure_dir_exists(path): - if not os.path.exists(path): - os.makedirs(path) - - def gradio_download_youtube_video(url): - """Download video using yt-dlp with specified options.""" - # Determine ffmpeg path based on the operating system. - ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg' - - # Extract information about the video - with yt_dlp.YoutubeDL({'quiet': True}) as ydl: - info_dict = ydl.extract_info(url, download=False) - sanitized_title = sanitize_filename(info_dict['title']) - original_ext = info_dict['ext'] - - # Setup the final directory and filename - download_dir = Path(f"results/{sanitized_title}") - download_dir.mkdir(parents=True, exist_ok=True) - output_file_path = download_dir / f"{sanitized_title}.{original_ext}" - - # Initialize yt-dlp with generic options and the output template - ydl_opts = { - 'format': 'bestvideo+bestaudio/best', - 'ffmpeg_location': ffmpeg_path, - 'outtmpl': str(output_file_path), - 'noplaylist': True, 'quiet': True - } - - # Execute yt-dlp to download the video - with yt_dlp.YoutubeDL(ydl_opts) as ydl: - ydl.download([url]) - - # Final check to ensure file exists - if not output_file_path.exists(): - raise FileNotFoundError(f"Expected file was not found: {output_file_path}") - - return str(output_file_path) - - download_videos_interface = gr.Interface( - fn=gradio_download_youtube_video, - inputs=gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here"), - outputs=gr.File(label="Download Video"), - title="YouTube Video Downloader (Simple youtube video downloader tool, if you want a real one, check this project: https://github.com/StefanLobbenmeier/youtube-dl-gui or https://github.com/yt-dlg/yt-dlg )", - description="Enter a YouTube URL to download the video.", - allow_flagging="never" + [keyword_add_interface, keyword_delete_interface], + ["Add Keywords", "Delete Keywords"] ) # Combine interfaces into a tabbed interface - tabbed_interface = gr.TabbedInterface([iface, search_interface, llamafile_interface, keyword_tab, import_export_tab, download_videos_interface], - ["Transcription / Summarization / Ingestion", "Search / Detailed View", - "Llamafile Interface", "Keywords", "Export/Import", "Download Video/Audio Files"]) + tabbed_interface = gr.TabbedInterface([iface, search_tab, export_tab, keyword_tab], + ["Transcription + Summarization", "Search", "Export", "Keywords"]) + # Launch the interface server_port_variable = 7860 - global server_mode, share_public - if server_mode is True and share_public is False: + if server_mode: tabbed_interface.launch(share=True, server_port=server_port_variable, server_name="http://0.0.0.0") - elif share_public == True: - tabbed_interface.launch(share=True, ) + elif share_public: + tabbed_interface.launch(share=True,) else: - tabbed_interface.launch(share=False, ) - - -def clean_youtube_url(url): - parsed_url = urlparse(url) - query_params = parse_qs(parsed_url.query) - if 'list' in query_params: - query_params.pop('list') - cleaned_query = urlencode(query_params, doseq=True) - cleaned_url = urlunparse(parsed_url._replace(query=cleaned_query)) - return cleaned_url - - -def process_url( - url, - num_speakers, - whisper_model, - custom_prompt, - offset, - api_name, - api_key, - vad_filter, - download_video, - download_audio, - rolling_summarization, - detail_level, - question_box, - keywords, - chunk_text_by_words, - max_words, - chunk_text_by_sentences, - max_sentences, - chunk_text_by_paragraphs, - max_paragraphs, - chunk_text_by_tokens, - max_tokens -): - # Handle the chunk summarization options - set_chunk_txt_by_words = chunk_text_by_words - set_max_txt_chunk_words = max_words - set_chunk_txt_by_sentences = chunk_text_by_sentences - set_max_txt_chunk_sentences = max_sentences - set_chunk_txt_by_paragraphs = chunk_text_by_paragraphs - set_max_txt_chunk_paragraphs = max_paragraphs - set_chunk_txt_by_tokens = chunk_text_by_tokens - set_max_txt_chunk_tokens = max_tokens - - # Validate input - if not url: - return "No URL provided.", "No URL provided.", None, None, None, None, None, None - - if not is_valid_url(url): - return "Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None - - # Clean the URL to remove playlist parameters if any - url = clean_youtube_url(url) - - print("API Name received:", api_name) # Debugging line - - logging.info(f"Processing URL: {url}") - video_file_path = None - global info_dict - try: - # Instantiate the database, db as a instance of the Database class - db = Database() - media_url = url - - info_dict = get_youtube(url) # Extract video information using yt_dlp - media_title = info_dict['title'] if 'title' in info_dict else 'Untitled' - - download_video_flag = True - results = main(url, api_name=api_name, api_key=api_key, - num_speakers=num_speakers, - whisper_model=whisper_model, - offset=offset, - vad_filter=vad_filter, - download_video_flag=download_video, - custom_prompt=custom_prompt, - overwrite=args.overwrite, - rolling_summarization=rolling_summarization, - detail=detail_level, - keywords=keywords, - ) - - if not results: - return "No URL provided.", "No URL provided.", None, None, None, None, None, None - - transcription_result = results[0] - transcription_text = json.dumps(transcription_result['transcription'], indent=2) - summary_text = transcription_result.get('summary', 'Summary not available') - - # Prepare file paths for transcription and summary - # Sanitize filenames - audio_file_sanitized = sanitize_filename(transcription_result['audio_file']) - json_pretty_file_path = os.path.join('Results', audio_file_sanitized.replace('.wav', '.segments_pretty.json')) - json_file_path = os.path.join('Results', audio_file_sanitized.replace('.wav', '.segments.json')) - summary_file_path = os.path.join('Results', audio_file_sanitized.replace('.wav', '_summary.txt')) - - logging.debug(f"Transcription result: {transcription_result}") - logging.debug(f"Audio file path: {transcription_result['audio_file']}") - - # Write the transcription to the JSON File - try: - with open(json_file_path, 'w') as json_file: - json.dump(transcription_result['transcription'], json_file, indent=2) - except IOError as e: - logging.error(f"Error writing transcription to JSON file: {e}") - - # Write the summary to the summary file - with open(summary_file_path, 'w') as summary_file: - summary_file.write(summary_text) + tabbed_interface.launch(share=False,) - try: - if download_video: - video_file_path = transcription_result.get('video_path', None) - if video_file_path and os.path.exists(video_file_path): - logging.debug(f"Confirmed existence of video file at {video_file_path}") - else: - logging.error(f"Video file not found at expected path: {video_file_path}") - video_file_path = None - else: - video_file_path = None - - if isinstance(transcription_result['transcription'], list): - text = ' '.join([segment['Text'] for segment in transcription_result['transcription']]) - else: - text = '' - - except Exception as e: - logging.error(f"Error processing video file: {e}") - - # Check if files exist before returning paths - if not os.path.exists(json_file_path): - raise FileNotFoundError(f"File not found: {json_file_path}") - if not os.path.exists(summary_file_path): - raise FileNotFoundError(f"File not found: {summary_file_path}") - - formatted_transcription = format_transcription(transcription_result) - - try: - # Ensure these variables are correctly populated - custom_prompt = args.custom_prompt if args.custom_prompt else ("\n\nabove is the transcript of a video " - "Please read through the transcript carefully. Identify the main topics that are discussed over the " - "course of the transcript. Then, summarize the key points about each main topic in a concise bullet " - "point. The bullet points should cover the key information conveyed about each topic in the video, " - "but should be much shorter than the full transcript. Please output your bullet point summary inside " - " tags.") - - db = Database() - create_tables() - media_url = url - # FIXME - IDK? - video_info = get_video_info(media_url) - media_title = get_page_title(media_url) - media_type = "video" - media_content = transcription_text - keyword_list = keywords.split(',') if keywords else ["default"] - media_keywords = ', '.join(keyword_list) - media_author = "auto_generated" - media_ingestion_date = datetime.now().strftime('%Y-%m-%d') - transcription_model = whisper_model # Add the transcription model used - - # Log the values before calling the function - logging.info(f"Media URL: {media_url}") - logging.info(f"Media Title: {media_title}") - logging.debug(f"Media Type: {media_type}") - logging.debug(f"Media Content: {media_content}") - logging.debug(f"Media Keywords: {media_keywords}") - logging.debug(f"Media Author: {media_author}") - logging.debug(f"Ingestion Date: {media_ingestion_date}") - logging.debug(f"Custom Prompt: {custom_prompt}") - logging.debug(f"Summary Text: {summary_text}") - logging.debug(f"Transcription Model: {transcription_model}") - - # Check if any required field is empty - if not media_url or not media_title or not media_type or not media_content or not media_keywords or not custom_prompt or not summary_text: - raise InputError("Please provide all required fields.") - - add_media_with_keywords( - url=media_url, - title=media_title, - media_type=media_type, - content=media_content, - keywords=media_keywords, - prompt=custom_prompt, - summary=summary_text, - transcription_model=transcription_model, # Pass the transcription model - author=media_author, - ingestion_date=media_ingestion_date - ) - except Exception as e: - logging.error(f"Failed to add media to the database: {e}") - if summary_file_path and os.path.exists(summary_file_path): - return transcription_text, summary_text, json_file_path, summary_file_path, video_file_path, None - else: - return transcription_text, summary_text, json_file_path, None, video_file_path, None - except KeyError as e: - logging.error(f"Error processing {url}: {str(e)}") - return str(e), 'Error processing the request.', None, None, None, None - except Exception as e: - logging.error(f"Error processing URL: {e}") - return str(e), 'Error processing the request.', None, None, None, None +# +# +####################################################################################################################### -# FIXME - Prompt sample box +####################################################################################################################### +# Prompt Sample Box +# # Sample data prompts_category_1 = [ @@ -4657,16 +2682,308 @@ def handle_prompt_selection(prompt): ####################################################################################################################### # Local LLM Setup / Running # -# Function List -# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) -# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) -# 3. verify_checksum(file_path, expected_checksum) -# 4. cleanup_process() -# 5. signal_handler(sig, frame) -# 6. local_llm_function() -# 7. launch_in_new_terminal_windows(executable, args) -# 8. launch_in_new_terminal_linux(executable, args) -# 9. launch_in_new_terminal_mac(executable, args) + +# Download latest llamafile from Github + # Example usage + #repo = "Mozilla-Ocho/llamafile" + #asset_name_prefix = "llamafile-" + #output_filename = "llamafile" + #download_latest_llamafile(repo, asset_name_prefix, output_filename) +def download_latest_llamafile(repo, asset_name_prefix, output_filename): + # Globals + global local_llm_model, llamafile + # Check if the file already exists + print("Checking for and downloading Llamafile it it doesn't already exist...") + if os.path.exists(output_filename): + time.sleep(1) + print("Llamafile already exists. Skipping download.") + logging.debug(f"{output_filename} already exists. Skipping download.") + time.sleep(1) + llamafile = output_filename + llamafile_exists = True + else: + llamafile_exists = False + + if llamafile_exists == True: + pass + else: + # Get the latest release information + latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" + response = requests.get(latest_release_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch latest release info: {response.status_code}") + + latest_release_data = response.json() + tag_name = latest_release_data['tag_name'] + + # Get the release details using the tag name + release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" + response = requests.get(release_details_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") + + release_data = response.json() + assets = release_data.get('assets', []) + + # Find the asset with the specified prefix + asset_url = None + for asset in assets: + if re.match(f"{asset_name_prefix}.*", asset['name']): + asset_url = asset['browser_download_url'] + break + + if not asset_url: + raise Exception(f"No asset found with prefix {asset_name_prefix}") + + # Download the asset + response = requests.get(asset_url) + if response.status_code != 200: + raise Exception(f"Failed to download asset: {response.status_code}") + + print("Llamafile downloaded successfully.") + logging.debug("Main: Llamafile downloaded successfully.") + + # Save the file + with open(output_filename, 'wb') as file: + file.write(response.content) + + logging.debug(f"Downloaded {output_filename} from {asset_url}") + print(f"Downloaded {output_filename} from {asset_url}") + + # Check to see if the LLM already exists, and if not, download the LLM + print("Checking for and downloading LLM from Huggingface if needed...") + logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") + mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + Phi_3_mini_4k_instruct_Q8_0_llamafile = "Phi-3-mini-4k-instruct.Q8_0.llamafile" + meta_Llama_3_8B_Instruct_Q8_0_llamafile = 'Meta-Llama-3-8B-Instruct.Q8_0.llamafile' + + available_models = [] + + # Check for existence of model files + if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): + available_models.append(mistral_7b_instruct_v0_2_q8_0_llamafile) + print("Mistral-7B-Instruct-v0.2.Q8_0.llamafile already exists. Skipping download.") + if os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): + available_models.append(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8) + print("Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8_0.gguf already exists. Skipping download.") + if os.path.exists(Phi_3_mini_4k_instruct_Q8_0_llamafile): + available_models.append(Phi_3_mini_4k_instruct_Q8_0_llamafile) + print("Phi-3-mini-4k-instruct-Q8_0.llamafile already exists. Skipping download.") + if os.path.exists(meta_Llama_3_8B_Instruct_Q8_0_llamafile): + available_models.append(meta_Llama_3_8B_Instruct_Q8_0_llamafile) + print("Meta-Llama-3-8B-Instruct.Q8_0.llamafile already exists. Skipping download.") + + # If no models are available, download the models + if not available_models: + user_choice_main = input("Would you like to download an LLM model? (Y/N): ") + elif available_models: + user_choice_main = input("\nSeems you already have a model available, would you like to download another LLM model? (Y/N): ") + + + if user_choice_main.lower() == "y": + logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") + time.sleep(1) + dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") + if dl_check.lower == "n" or "2": + exit() + else: + llm_choice = input("\nWhich LLM model would you like to download?\n\n1. Mistral-7B-Instruct-v0.2-GGUF \n2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) \n3. Microsoft Phi3-Mini-128k 3.8B): \n\nPress '1', '2', or '3' to specify:\n\n ") + while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": + print("Invalid choice. Please try again.") + + if llm_choice == "1": + print("Downloading the Mistral-7B-Instruct-v0.2 LLM from Huggingface...") + print("Gonna be a bit...") + print("Like seriously, an 8GB file...(don't say I didn't warn you...)") + time.sleep(2) + mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" + llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 + llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" + llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + local_llm_model = "mistral-7b-instruct-v0.2.Q8_0.llamafile" + + elif llm_choice == "2": + print("Downloading the samantha-mistra-instruct-7b-bulleted-notes LLM from Huggingface...") + print("Gonna be a bit...") + print("Like seriously, an 8GB file...(don't say I didn't warn you...)") + time.sleep(2) + samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" + llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 + llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + local_llm_model = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" + + elif llm_choice == "3": + print("Downloading MS Phi-3-4k-3.8B LLM from Huggingface...") + print("Gonna be a bit...") + print("Like seriously, a 4GB file...(don't say I didn't warn you...)") + time.sleep(2) + Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 = "1b51fc72fda221dd7b4d3e84603db37fbb1ce53c17f2e7583b7026d181b8d20f" + llm_download_model_hash = Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 + llamafile_llm_output_filename = "Phi-3-mini-4k-instruct.Q8_0.llamafile" + llamafile_llm_url = "https://huggingface.co/Mozilla/Phi-3-mini-4k-instruct-llamafile/resolve/main/Phi-3-mini-4k-instruct.Q8_0.llamafile?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + local_llm_model = "Phi-3-mini-4k-instruct-Q8_0.llamafile" + + elif llm_choice == "4": + print("Downloading the Llama-3-8B LLM from Huggingface...") + print("Gonna be a bit...") + print("Like seriously, a 8GB file...(don't say I didn't warn you...)") + time.sleep(2) + meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" + llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 + llamafile_llm_output_filename = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile" + llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" + download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) + local_llm_model = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile" + + else: + print("Invalid choice. Please try again.") + else: + pass + if available_models: + print("\n\nAvailable models:") + for idx, model in enumerate(available_models, start=1): + print(f"{idx}. {model}") + user_choice = input("\nWhich model would you like to use? Please enter the corresponding number: ") + while not user_choice.isdigit() or int(user_choice) not in range(1, len(available_models) + 1): + print("Invalid choice. Please try again.") + user_choice = input("Which model would you like to use? Please enter the corresponding number: ") + user_answer = available_models[int(user_choice) - 1] + local_llm_model = user_answer + print(f"You have chosen to use: {user_answer}") + else: + print("No models available/Found.") + print("Please run the script again and select a model, or download one. Exiting...") + exit() + + return llamafile, user_answer + + +def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5): + temp_path = dest_path + '.tmp' + + for attempt in range(max_retries): + try: + # Check if a partial download exists and get its size + resume_header = {} + if os.path.exists(temp_path): + resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'} + + response = requests.get(url, stream=True, headers=resume_header) + response.raise_for_status() + + # Get the total file size from headers + total_size = int(response.headers.get('content-length', 0)) + initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0 + + mode = 'ab' if 'Range' in response.headers else 'wb' + with open(temp_path, mode) as temp_file, tqdm( + total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True + ) as pbar: + for chunk in response.iter_content(chunk_size=8192): + if chunk: # filter out keep-alive new chunks + temp_file.write(chunk) + pbar.update(len(chunk)) + + # Verify the checksum if provided + if expected_checksum: + if not verify_checksum(temp_path, expected_checksum): + os.remove(temp_path) + raise ValueError("Downloaded file's checksum does not match the expected checksum") + + # Move the file to the final destination + os.rename(temp_path, dest_path) + print("Download complete and verified!") + return dest_path + + except Exception as e: + print(f"Attempt {attempt + 1} failed: {e}") + if attempt < max_retries - 1: + print(f"Retrying in {delay} seconds...") + time.sleep(delay) + else: + print("Max retries reached. Download failed.") + raise + + +def verify_checksum(file_path, expected_checksum): + sha256_hash = hashlib.sha256() + with open(file_path, 'rb') as f: + for byte_block in iter(lambda: f.read(4096), b''): + sha256_hash.update(byte_block) + return sha256_hash.hexdigest() == expected_checksum + + +# FIXME - Doesn't work... +# Function to close out llamafile process on script exit. +def cleanup_process(): + global process + if process is not None: + process.terminate() + process = None + print("Terminated the external process") + +def signal_handler(sig, frame): + logging.info('Signal handler called with signal: %s', sig) + cleanup_process() + sys.exit(0) + + +# Function to launch the llamafile in an external terminal window +# local_llm_model = Whatever the local model is +def local_llm_function(): + repo = "Mozilla-Ocho/llamafile" + asset_name_prefix = "llamafile-" + useros = os.name + if useros == "nt": + output_filename = "llamafile.exe" + else: + output_filename = "llamafile" + print( + "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") + print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") + print("WARNING - Hope you're comfy. Or it's already downloaded.") + time.sleep(6) + logging.debug("Main: Checking and downloading Llamafile from Github if needed...") + llamafile, user_answer = download_latest_llamafile(repo, asset_name_prefix, output_filename) + logging.debug("Main: Llamafile downloaded successfully.") + + # Launch the llamafile in an external process with the specified argument + arguments = ["-m", user_answer] + try: + logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") + if useros == "nt": + launch_in_new_terminal_windows(llamafile, arguments) + elif useros == "posix": + launch_in_new_terminal_linux(llamafile, arguments) + else: + launch_in_new_terminal_mac(llamafile, arguments) + # FIXME - pid doesn't exist in this context + #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") + atexit.register(cleanup_process) + except Exception as e: + logging.error(f"Failed to launch the process: {e}") + print(f"Failed to launch the process: {e}") + + +def launch_in_new_terminal_windows(executable, args): + command = f'start cmd /k "{executable} {" ".join(args)}"' + process = subprocess.run(command, shell=True) + +# FIXME +def launch_in_new_terminal_linux(executable, args): + command = f'gnome-terminal -- {executable} {" ".join(args)}' + process = subprocess.run(command, shell=True) + +# FIXME +def launch_in_new_terminal_mac(executable, args): + command = f'open -a Terminal.app {executable} {" ".join(args)}' + process = subprocess.run(command, shell=True) + # # ####################################################################################################################### @@ -4681,24 +2998,19 @@ def main(input_path, api_name=None, api_key=None, whisper_model="small.en", offset=0, vad_filter=False, - download_video_flag=True, + download_video_flag=False, custom_prompt=None, overwrite=False, rolling_summarization=False, detail=0.01, keywords=None, + chunk_summarization=False, + chunk_duration=None, + words_per_second=None, llm_model=None, - time_based=False, - set_chunk_txt_by_words=False, - set_max_txt_chunk_words=0, - set_chunk_txt_by_sentences=False, - set_max_txt_chunk_sentences=0, - set_chunk_txt_by_paragraphs=False, - set_max_txt_chunk_paragraphs=0, - set_chunk_txt_by_tokens=False, - set_max_txt_chunk_tokens=0, - ): - global detail_level_number, summary, audio_file, transcription_result, info_dict + time_based=False): + + global detail_level_number, summary, audio_file, detail_level, summary detail_level = detail @@ -4733,16 +3045,11 @@ def main(input_path, api_name=None, api_key=None, info_dict = get_youtube(path) json_file_path = None if info_dict: - logging.debug(f"MAIN: info_dict content: {info_dict}") logging.debug("MAIN: Creating path for video file...") download_path = create_download_directory(info_dict['title']) logging.debug("MAIN: Path created successfully\n MAIN: Now Downloading video from yt_dlp...") - download_video_flag = True try: video_path = download_video(path, download_path, info_dict, download_video_flag) - if video_path is None: - logging.error("MAIN: video_path is None after download_video") - continue except RuntimeError as e: logging.error(f"Error downloading video: {str(e)}") # FIXME - figure something out for handling this situation.... @@ -4762,26 +3069,14 @@ def main(input_path, api_name=None, api_key=None, if info_dict: logging.debug("MAIN: Creating transcription file from WAV") segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter) - transcription_result = { 'video_path': path, 'audio_file': audio_file, 'transcription': segments } - - if isinstance(segments, dict) and "error" in segments: - logging.error(f"Error transcribing audio: {segments['error']}") - transcription_result['error'] = segments['error'] - results.append(transcription_result) logging.info(f"MAIN: Transcription complete: {audio_file}") - # Check if segments is a dictionary before proceeding with summarization - if isinstance(segments, dict): - logging.warning("Skipping summarization due to transcription error") - continue - - # FIXME # Perform rolling summarization based on API Name, detail level, and if an API key exists # Will remove the API key once rolling is added for llama.cpp @@ -4808,6 +3103,45 @@ def main(input_path, api_name=None, api_key=None, save_summary_to_file(summary, json_file_path) else: logging.warning("MAIN: Rolling Summarization failed.") + + # FIXME - fucking mess of a function. + # # Time-based Summarization + # elif args.time_based: + # logging.info("MAIN: Time-based Summarization") + # global time_based_value + # time_based_value = args.time_based + # # Set the json_file_path + # json_file_path = audio_file.replace('.wav', '.segments.json') + # + # # Perform time-based summarization + # summary = time_chunk_summarize(api_name, api_key, segments, args.time_based, custom_prompt, + # llm_model) + # + # # Handle the summarized output + # if summary: + # transcription_result['summary'] = summary + # logging.info("MAIN: Time-based Summarization successful.") + # save_summary_to_file(summary, json_file_path) + # else: + # logging.warning("MAIN: Time-based Summarization failed.") + + # Perform chunk summarization - FIXME + elif chunk_summarization: + logging.info("MAIN: Chunk Summarization") + + # Set the json_file_path + json_file_path = audio_file.replace('.wav', '.segments.json') + + # Perform chunk summarization + summary = summarize_chunks(api_name, api_key, segments, chunk_duration, words_per_second) + + # Handle the summarized output + if summary: + transcription_result['summary'] = summary + logging.info("MAIN: Chunk Summarization successful.") + save_summary_to_file(summary, json_file_path) + else: + logging.warning("MAIN: Chunk Summarization failed.") # Perform summarization based on the specified API elif api_name: logging.debug(f"MAIN: Summarization being performed by {api_name}") @@ -4818,25 +3152,6 @@ def main(input_path, api_name=None, api_key=None, try: logging.debug(f"MAIN: trying to summarize with openAI") summary = summarize_with_openai(openai_api_key, json_file_path, custom_prompt) - if summary != "openai: Error occurred while processing summary": - transcription_result['summary'] = summary - logging.info(f"Summary generated using {api_name} API") - save_summary_to_file(summary, json_file_path) - # Add media to the database - add_media_with_keywords( - url=path, - title=info_dict.get('title', 'Untitled'), - media_type='video', - content=' '.join([segment['text'] for segment in segments]), - keywords=','.join(keywords), - prompt=custom_prompt or 'No prompt provided', - summary=summary or 'No summary provided', - transcription_model=whisper_model, - author=info_dict.get('uploader', 'Unknown'), - ingestion_date=datetime.now().strftime('%Y-%m-%d') - ) - else: - logging.warning(f"Failed to generate summary using {api_name} API") except requests.exceptions.ConnectionError: requests.status_code = "Connection: " elif api_name.lower() == "anthropic": @@ -4862,14 +3177,6 @@ def main(input_path, api_name=None, api_key=None, summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, custom_prompt) except requests.exceptions.ConnectionError: requests.status_code = "Connection: " - elif api_name.lower() == "openrouter": - openrouter_api_key = api_key if api_key else config.get('API', 'openrouter_api_key', - fallback=None) - try: - logging.debug(f"MAIN: Trying to summarize with OpenRouter") - summary = summarize_with_openrouter(openrouter_api_key, json_file_path, custom_prompt) - except requests.exceptions.ConnectionError: - requests.status_code = "Connection: " elif api_name.lower() == "llama": llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None) llama_ip = llama_api_IP @@ -4929,11 +3236,10 @@ def main(input_path, api_name=None, api_key=None, transcription_result['summary'] = summary logging.info(f"Summary generated using {api_name} API") save_summary_to_file(summary, json_file_path) - # FIXME - # elif final_summary: - # logging.info(f"Rolling summary generated using {api_name} API") - # logging.info(f"Final Rolling summary is {final_summary}\n\n") - # save_summary_to_file(final_summary, json_file_path) + elif final_summary: + logging.info(f"Rolling summary generated using {api_name} API") + logging.info(f"Final Rolling summary is {final_summary}\n\n") + save_summary_to_file(final_summary, json_file_path) else: logging.warning(f"Failed to generate summary using {api_name} API") else: @@ -4955,6 +3261,9 @@ def main(input_path, api_name=None, api_key=None, except Exception as e: logging.error(f"Error processing {path}: {str(e)}") + continue + except Exception as e: + logging.error(f"Error processing path: {path}") logging.error(str(e)) continue # end_time = time.monotonic() @@ -4962,13 +3271,10 @@ def main(input_path, api_name=None, api_key=None, return results - -def signal_handler(sig, frame): - logging.info('Signal handler called with signal: %s', sig) - cleanup_process() +def signal_handler(signal, frame): + logging.info('Signal received, exiting...') sys.exit(0) - ############################## MAIN ############################## # # @@ -4979,7 +3285,6 @@ if __name__ == "__main__": signal.signal(signal.SIGTERM, signal_handler) # Establish logging baseline logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') - print_hello() parser = argparse.ArgumentParser( description='Transcribe and summarize videos.', epilog=''' @@ -5007,7 +3312,7 @@ Sample commands: help='Whisper model (default: small.en)') parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') - parser.add_argument('-log', '--log_level', type=str, default='DEBUG', + parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') parser.add_argument('-gui', '--user_interface', action='store_true', help="Launch the Gradio user interface") parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') @@ -5021,47 +3326,27 @@ Sample commands: 'of chunks) -> 1.00 (few chunks)\n Currently ' 'only OpenAI works. ', default=0.01, ) + # FIXME - This or time based... + parser.add_argument('--chunk_duration', type=int, default=DEFAULT_CHUNK_DURATION, + help='Duration of each chunk in seconds') + # FIXME - This or chunk_duration.... -> Maybe both??? + parser.add_argument('-time', '--time_based', type=int, + help='Enable time-based summarization and specify the chunk duration in seconds (minimum 60 seconds, increments of 30 seconds)') parser.add_argument('-model', '--llm_model', type=str, default='', help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)') parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'], help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)') parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)') - parser.add_argument('--local_llm', action='store_true', - help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") - parser.add_argument('--server_mode', action='store_true', - help='Run in server mode (This exposes the GUI/Server to the network)') - parser.add_argument('--share_public', type=int, default=7860, - help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") + parser.add_argument('--local_llm', action='store_true', help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)") + parser.add_argument('--server_mode', action='store_true', help='Run in server mode (This exposes the GUI/Server to the network)') + parser.add_argument('--share_public', type=int, default=7860, help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)") parser.add_argument('--port', type=int, default=7860, help='Port to run the server on') - #parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage') # parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file') args = parser.parse_args() - - # Set Chunking values/variables - set_chunk_txt_by_words = False - set_max_txt_chunk_words = 0 - set_chunk_txt_by_sentences = False - set_max_txt_chunk_sentences = 0 - set_chunk_txt_by_paragraphs = False - set_max_txt_chunk_paragraphs = 0 - set_chunk_txt_by_tokens = False - set_max_txt_chunk_tokens = 0 - - if args.share_public: - share_public = args.share_public - else: - share_public = None - if args.server_mode: - server_mode = args.server_mode - else: - server_mode = None - if args.server_mode is True: - server_mode = True - if args.port: - server_port = args.port - else: - server_port = None + share_public = args.share_public + server_mode = args.server_mode + server_port = args.port ########## Logging setup logger = logging.getLogger() @@ -5072,6 +3357,7 @@ Sample commands: console_handler.setLevel(getattr(logging, args.log_level)) console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') console_handler.setFormatter(console_formatter) + logger.addHandler(console_handler) if args.log_file: # Create file handler @@ -5085,20 +3371,17 @@ Sample commands: ########## Custom Prompt setup custom_prompt = args.custom_prompt - if not args.custom_prompt: + if custom_prompt is None or custom_prompt == "": logging.debug("No custom prompt defined, will use default") - args.custom_prompt = ( - "\n\nabove is the transcript of a video. " - "Please read through the transcript carefully. Identify the main topics that are " - "discussed over the course of the transcript. Then, summarize the key points about each " - "main topic in a concise bullet point. The bullet points should cover the key " - "information conveyed about each topic in the video, but should be much shorter than " - "the full transcript. Please output your bullet point summary inside " - "tags." - ) - print("No custom prompt defined, will use default") - + args.custom_prompt = ("\n\nabove is the transcript of a video " + "Please read through the transcript carefully. Identify the main topics that are " + "discussed over the course of the transcript. Then, summarize the key points about each " + "main topic in a concise bullet point. The bullet points should cover the key " + "information conveyed about each topic in the video, but should be much shorter than " + "the full transcript. Please output your bullet point summary inside " + "tags.") custom_prompt = args.custom_prompt + print("No custom prompt defined, will use default") else: logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt") print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}") @@ -5107,16 +3390,17 @@ Sample commands: local_llm = args.local_llm logging.info(f'Local LLM flag: {local_llm}') + args.user_interface = True if args.user_interface: - if local_llm: - local_llm_function() - time.sleep(2) - webbrowser.open_new_tab('http://127.0.0.1:7860') +# if local_llm: +# local_llm_function() +# time.sleep(3) +# webbrowser.open_new_tab('http://127.0.0.1:7860') launch_ui(demo_mode=False) else: if not args.input_path: parser.print_help() - launch_ui(demo_mode=False) + sys.exit(1) logging.info('Starting the transcription and summarization process.') logging.info(f'Input path: {args.input_path}') @@ -5164,10 +3448,10 @@ Sample commands: cuda_check() logging.debug("ffmpeg check being performed...") check_ffmpeg() - #download_ffmpeg() llm_model = args.llm_model or None + try: results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, @@ -5181,17 +3465,11 @@ Sample commands: rolling_summarization=args.rolling_summarization, detail=args.detail_level, keywords=args.keywords, + chunk_summarization=False, + chunk_duration=None, + words_per_second=None, llm_model=args.llm_model, - time_based=args.time_based, - set_chunk_txt_by_words=set_chunk_txt_by_words, - set_max_txt_chunk_words=set_max_txt_chunk_words, - set_chunk_txt_by_sentences=set_chunk_txt_by_sentences, - set_max_txt_chunk_sentences=set_max_txt_chunk_sentences, - set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs, - set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs, - set_chunk_txt_by_tokens=set_chunk_txt_by_tokens, - set_max_txt_chunk_tokens=set_max_txt_chunk_tokens, - ) + time_based=args.time_based) logging.info('Transcription process completed.') atexit.register(cleanup_process)