Spaces:
Running
Running
oceansweep
commited on
Commit
•
c7e020d
1
Parent(s):
8d1d1bc
Update App_Function_Libraries/Audio_Transcription_Lib.py
Browse files
App_Function_Libraries/Audio_Transcription_Lib.py
CHANGED
@@ -1,158 +1,192 @@
|
|
1 |
-
# Audio_Transcription_Lib.py
|
2 |
-
#########################################
|
3 |
-
# Transcription Library
|
4 |
-
# This library is used to perform transcription of audio files.
|
5 |
-
# Currently, uses faster_whisper for transcription.
|
6 |
-
#
|
7 |
-
####
|
8 |
-
import configparser
|
9 |
-
####################
|
10 |
-
# Function List
|
11 |
-
#
|
12 |
-
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
|
13 |
-
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
|
14 |
-
#
|
15 |
-
####################
|
16 |
-
#
|
17 |
-
# Import necessary libraries to run solo for testing
|
18 |
-
import
|
19 |
-
import
|
20 |
-
import
|
21 |
-
import
|
22 |
-
import
|
23 |
-
import
|
24 |
-
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
#
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
#######################################################################################################################
|
|
|
1 |
+
# Audio_Transcription_Lib.py
|
2 |
+
#########################################
|
3 |
+
# Transcription Library
|
4 |
+
# This library is used to perform transcription of audio files.
|
5 |
+
# Currently, uses faster_whisper for transcription.
|
6 |
+
#
|
7 |
+
####
|
8 |
+
import configparser
|
9 |
+
####################
|
10 |
+
# Function List
|
11 |
+
#
|
12 |
+
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
|
13 |
+
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
|
14 |
+
#
|
15 |
+
####################
|
16 |
+
#
|
17 |
+
# Import necessary libraries to run solo for testing
|
18 |
+
import gc
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
import subprocess
|
24 |
+
import time
|
25 |
+
|
26 |
+
# DEBUG Imports
|
27 |
+
#from memory_profiler import profile
|
28 |
+
|
29 |
+
# Import Local
|
30 |
+
#
|
31 |
+
#######################################################################################################################
|
32 |
+
# Function Definitions
|
33 |
+
#
|
34 |
+
|
35 |
+
# Convert video .m4a into .wav using ffmpeg
|
36 |
+
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
|
37 |
+
# https://www.gyan.dev/ffmpeg/builds/
|
38 |
+
#
|
39 |
+
|
40 |
+
|
41 |
+
whisper_model_instance = None
|
42 |
+
# Retrieve processing choice from the configuration file
|
43 |
+
config = configparser.ConfigParser()
|
44 |
+
config.read('config.txt')
|
45 |
+
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
46 |
+
|
47 |
+
|
48 |
+
# FIXME: This is a temporary solution.
|
49 |
+
# This doesn't clear older models, which means potentially a lot of memory is being used...
|
50 |
+
def get_whisper_model(model_name, device):
|
51 |
+
global whisper_model_instance
|
52 |
+
if whisper_model_instance is None:
|
53 |
+
from faster_whisper import WhisperModel
|
54 |
+
logging.info(f"Initializing new WhisperModel with size {model_name} on device {device}")
|
55 |
+
whisper_model_instance = WhisperModel(model_name, device=device)
|
56 |
+
return whisper_model_instance
|
57 |
+
|
58 |
+
|
59 |
+
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
60 |
+
#DEBUG
|
61 |
+
#@profile
|
62 |
+
def convert_to_wav(video_file_path, offset=0, overwrite=False):
|
63 |
+
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
64 |
+
|
65 |
+
if os.path.exists(out_path) and not overwrite:
|
66 |
+
print(f"File '{out_path}' already exists. Skipping conversion.")
|
67 |
+
logging.info(f"Skipping conversion as file already exists: {out_path}")
|
68 |
+
return out_path
|
69 |
+
print("Starting conversion process of .m4a to .WAV")
|
70 |
+
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
71 |
+
|
72 |
+
try:
|
73 |
+
if os.name == "nt":
|
74 |
+
logging.debug("ffmpeg being ran on windows")
|
75 |
+
|
76 |
+
if sys.platform.startswith('win'):
|
77 |
+
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
|
78 |
+
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
|
79 |
+
else:
|
80 |
+
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
81 |
+
|
82 |
+
command = [
|
83 |
+
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
|
84 |
+
"-ss", "00:00:00", # Start at the beginning of the video
|
85 |
+
"-i", video_file_path,
|
86 |
+
"-ar", "16000", # Audio sample rate
|
87 |
+
"-ac", "1", # Number of audio channels
|
88 |
+
"-c:a", "pcm_s16le", # Audio codec
|
89 |
+
out_path
|
90 |
+
]
|
91 |
+
try:
|
92 |
+
# Redirect stdin from null device to prevent ffmpeg from waiting for input
|
93 |
+
with open(os.devnull, 'rb') as null_file:
|
94 |
+
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
|
95 |
+
if result.returncode == 0:
|
96 |
+
logging.info("FFmpeg executed successfully")
|
97 |
+
logging.debug("FFmpeg output: %s", result.stdout)
|
98 |
+
else:
|
99 |
+
logging.error("Error in running FFmpeg")
|
100 |
+
logging.error("FFmpeg stderr: %s", result.stderr)
|
101 |
+
raise RuntimeError(f"FFmpeg error: {result.stderr}")
|
102 |
+
except Exception as e:
|
103 |
+
logging.error("Error occurred - ffmpeg doesn't like windows")
|
104 |
+
raise RuntimeError("ffmpeg failed")
|
105 |
+
elif os.name == "posix":
|
106 |
+
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
107 |
+
else:
|
108 |
+
raise RuntimeError("Unsupported operating system")
|
109 |
+
logging.info("Conversion to WAV completed: %s", out_path)
|
110 |
+
except subprocess.CalledProcessError as e:
|
111 |
+
logging.error("Error executing FFmpeg command: %s", str(e))
|
112 |
+
raise RuntimeError("Error converting video file to WAV")
|
113 |
+
except Exception as e:
|
114 |
+
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
|
115 |
+
return {"error": str(e)}
|
116 |
+
gc.collect()
|
117 |
+
return out_path
|
118 |
+
|
119 |
+
|
120 |
+
# Transcribe .wav into .segments.json
|
121 |
+
#DEBUG
|
122 |
+
#@profile
|
123 |
+
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='medium.en', vad_filter=False, diarize=False):
|
124 |
+
global whisper_model_instance, processing_choice
|
125 |
+
logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model)
|
126 |
+
|
127 |
+
time_start = time.time()
|
128 |
+
if audio_file_path is None:
|
129 |
+
raise ValueError("speech-to-text: No audio file provided")
|
130 |
+
logging.info("speech-to-text: Audio file path: %s", audio_file_path)
|
131 |
+
|
132 |
+
try:
|
133 |
+
_, file_ending = os.path.splitext(audio_file_path)
|
134 |
+
out_file = audio_file_path.replace(file_ending, ".segments.json")
|
135 |
+
prettified_out_file = audio_file_path.replace(file_ending, ".segments_pretty.json")
|
136 |
+
if os.path.exists(out_file):
|
137 |
+
logging.info("speech-to-text: Segments file already exists: %s", out_file)
|
138 |
+
with open(out_file) as f:
|
139 |
+
global segments
|
140 |
+
segments = json.load(f)
|
141 |
+
return segments
|
142 |
+
|
143 |
+
logging.info('speech-to-text: Starting transcription...')
|
144 |
+
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
145 |
+
transcribe_options = dict(task="transcribe", **options)
|
146 |
+
# use function and config at top of file
|
147 |
+
whisper_model_instance = get_whisper_model(whisper_model, processing_choice)
|
148 |
+
segments_raw, info = whisper_model_instance.transcribe(audio_file_path, **transcribe_options)
|
149 |
+
|
150 |
+
segments = []
|
151 |
+
for segment_chunk in segments_raw:
|
152 |
+
chunk = {
|
153 |
+
"Time_Start": segment_chunk.start,
|
154 |
+
"Time_End": segment_chunk.end,
|
155 |
+
"Text": segment_chunk.text
|
156 |
+
}
|
157 |
+
logging.debug("Segment: %s", chunk)
|
158 |
+
segments.append(chunk)
|
159 |
+
|
160 |
+
if segments:
|
161 |
+
segments[0]["Text"] = f"This text was transcribed using whisper model: {whisper_model}\n\n" + segments[0]["Text"]
|
162 |
+
|
163 |
+
if not segments:
|
164 |
+
raise RuntimeError("No transcription produced. The audio file may be invalid or empty.")
|
165 |
+
logging.info("speech-to-text: Transcription completed in %.2f seconds", time.time() - time_start)
|
166 |
+
|
167 |
+
# Save the segments to a JSON file - prettified and non-prettified
|
168 |
+
# FIXME so this is an optional flag to save either the prettified json file or the normal one
|
169 |
+
save_json = True
|
170 |
+
if save_json:
|
171 |
+
logging.info("speech-to-text: Saving segments to JSON file")
|
172 |
+
output_data = {'segments': segments}
|
173 |
+
|
174 |
+
logging.info("speech-to-text: Saving prettified JSON to %s", prettified_out_file)
|
175 |
+
with open(prettified_out_file, 'w') as f:
|
176 |
+
json.dump(output_data, f, indent=2)
|
177 |
+
|
178 |
+
logging.info("speech-to-text: Saving JSON to %s", out_file)
|
179 |
+
with open(out_file, 'w') as f:
|
180 |
+
json.dump(output_data, f)
|
181 |
+
|
182 |
+
logging.debug(f"speech-to-text: returning {segments[:500]}")
|
183 |
+
gc.collect()
|
184 |
+
return segments
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
|
188 |
+
raise RuntimeError("speech-to-text: Error transcribing audio")
|
189 |
+
|
190 |
+
#
|
191 |
+
#
|
192 |
#######################################################################################################################
|