# Embeddings_tabc.py # Description: This file contains the code for the RAG Chat tab in the Gradio UI # # Imports import json import logging # # External Imports import gradio as gr import numpy as np from tqdm import tqdm # # Local Imports from App_Function_Libraries.DB.DB_Manager import get_all_content_from_database from App_Function_Libraries.RAG.ChromaDB_Library import chroma_client, \ store_in_chroma, situate_context from App_Function_Libraries.RAG.Embeddings_Create import create_embedding, create_embeddings_batch from App_Function_Libraries.Chunk_Lib import improved_chunking_process, chunk_for_embedding # ######################################################################################################################## # # Functions: def create_embeddings_tab(): with gr.TabItem("Create Embeddings"): gr.Markdown("# Create Embeddings for All Content") with gr.Row(): with gr.Column(): embedding_provider = gr.Radio( choices=["huggingface", "local", "openai"], label="Select Embedding Provider", value="huggingface" ) gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.") gr.Markdown("OpenAI provider requires a valid API key.") huggingface_model = gr.Dropdown( choices=[ "jinaai/jina-embeddings-v3", "Alibaba-NLP/gte-large-en-v1.5", "dunzhang/setll_en_400M_v5", "custom" ], label="Hugging Face Model", value="jinaai/jina-embeddings-v3", visible=True ) openai_model = gr.Dropdown( choices=[ "text-embedding-3-small", "text-embedding-3-large" ], label="OpenAI Embedding Model", value="text-embedding-3-small", visible=False ) custom_embedding_model = gr.Textbox( label="Custom Embedding Model", placeholder="Enter your custom embedding model name here", visible=False ) embedding_api_url = gr.Textbox( label="API URL (for local provider)", value="http://localhost:8080/embedding", visible=False ) # Add chunking options chunking_method = gr.Dropdown( choices=["words", "sentences", "paragraphs", "tokens", "semantic"], label="Chunking Method", value="words" ) max_chunk_size = gr.Slider( minimum=1, maximum=8000, step=1, value=500, label="Max Chunk Size" ) chunk_overlap = gr.Slider( minimum=0, maximum=4000, step=1, value=200, label="Chunk Overlap" ) adaptive_chunking = gr.Checkbox( label="Use Adaptive Chunking", value=False ) create_button = gr.Button("Create Embeddings") with gr.Column(): status_output = gr.Textbox(label="Status", lines=10) def update_provider_options(provider): if provider == "huggingface": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif provider == "local": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) else: # OpenAI return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) def update_huggingface_options(model): if model == "custom": return gr.update(visible=True) else: return gr.update(visible=False) embedding_provider.change( fn=update_provider_options, inputs=[embedding_provider], outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url] ) huggingface_model.change( fn=update_huggingface_options, inputs=[huggingface_model], outputs=[custom_embedding_model] ) def create_all_embeddings(provider, hf_model, openai_model, custom_model, api_url, method, max_size, overlap, adaptive): try: all_content = get_all_content_from_database() if not all_content: return "No content found in the database." chunk_options = { 'method': method, 'max_size': max_size, 'overlap': overlap, 'adaptive': adaptive } collection_name = "all_content_embeddings" collection = chroma_client.get_or_create_collection(name=collection_name) # Determine the model to use if provider == "huggingface": model = custom_model if hf_model == "custom" else hf_model elif provider == "openai": model = openai_model else: model = custom_model for item in all_content: media_id = item['id'] text = item['content'] chunks = improved_chunking_process(text, chunk_options) for i, chunk in enumerate(chunks): chunk_text = chunk['text'] chunk_id = f"doc_{media_id}_chunk_{i}" existing = collection.get(ids=[chunk_id]) if existing['ids']: continue embedding = create_embedding(chunk_text, provider, model, api_url) metadata = { "media_id": str(media_id), "chunk_index": i, "total_chunks": len(chunks), "chunking_method": method, "max_chunk_size": max_size, "chunk_overlap": overlap, "adaptive_chunking": adaptive, "embedding_model": model, "embedding_provider": provider, **chunk['metadata'] } store_in_chroma(collection_name, [chunk_text], [embedding], [chunk_id], [metadata]) return "Embeddings created and stored successfully for all content." except Exception as e: logging.error(f"Error during embedding creation: {str(e)}") return f"Error: {str(e)}" create_button.click( fn=create_all_embeddings, inputs=[embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url, chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking], outputs=status_output ) def create_view_embeddings_tab(): with gr.TabItem("View/Update Embeddings"): gr.Markdown("# View and Update Embeddings") item_mapping = gr.State({}) with gr.Row(): with gr.Column(): item_dropdown = gr.Dropdown(label="Select Item", choices=[], interactive=True) refresh_button = gr.Button("Refresh Item List") embedding_status = gr.Textbox(label="Embedding Status", interactive=False) embedding_preview = gr.Textbox(label="Embedding Preview", interactive=False, lines=5) embedding_metadata = gr.Textbox(label="Embedding Metadata", interactive=False, lines=10) with gr.Column(): create_new_embedding_button = gr.Button("Create New Embedding") embedding_provider = gr.Radio( choices=["huggingface", "local", "openai"], label="Select Embedding Provider", value="huggingface" ) gr.Markdown("Note: Local provider requires a running Llama.cpp/llamafile server.") gr.Markdown("OpenAI provider requires a valid API key.") huggingface_model = gr.Dropdown( choices=[ "jinaai/jina-embeddings-v3", "Alibaba-NLP/gte-large-en-v1.5", "dunzhang/stella_en_400M_v5", "custom" ], label="Hugging Face Model", value="jinaai/jina-embeddings-v3", visible=True ) openai_model = gr.Dropdown( choices=[ "text-embedding-3-small", "text-embedding-3-large" ], label="OpenAI Embedding Model", value="text-embedding-3-small", visible=False ) custom_embedding_model = gr.Textbox( label="Custom Embedding Model", placeholder="Enter your custom embedding model name here", visible=False ) embedding_api_url = gr.Textbox( label="API URL (for local provider)", value="http://localhost:8080/embedding", visible=False ) chunking_method = gr.Dropdown( choices=["words", "sentences", "paragraphs", "tokens", "semantic"], label="Chunking Method", value="words" ) max_chunk_size = gr.Slider( minimum=1, maximum=8000, step=5, value=500, label="Max Chunk Size" ) chunk_overlap = gr.Slider( minimum=0, maximum=5000, step=5, value=200, label="Chunk Overlap" ) adaptive_chunking = gr.Checkbox( label="Use Adaptive Chunking", value=False ) contextual_api_choice = gr.Dropdown( choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"], label="Select API for Contextualized Embeddings", value="OpenAI" ) use_contextual_embeddings = gr.Checkbox( label="Use Contextual Embeddings", value=True ) contextual_api_key = gr.Textbox(label="API Key", lines=1) def get_items_with_embedding_status(): try: items = get_all_content_from_database() collection = chroma_client.get_or_create_collection(name="all_content_embeddings") choices = [] new_item_mapping = {} for item in items: try: result = collection.get(ids=[f"doc_{item['id']}_chunk_0"]) embedding_exists = result is not None and result.get('ids') and len(result['ids']) > 0 status = "Embedding exists" if embedding_exists else "No embedding" except Exception as e: print(f"Error checking embedding for item {item['id']}: {str(e)}") status = "Error checking" choice = f"{item['title']} ({status})" choices.append(choice) new_item_mapping[choice] = item['id'] return gr.update(choices=choices), new_item_mapping except Exception as e: print(f"Error in get_items_with_embedding_status: {str(e)}") return gr.update(choices=["Error: Unable to fetch items"]), {} def update_provider_options(provider): if provider == "huggingface": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif provider == "local": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) else: # OpenAI return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) def update_huggingface_options(model): if model == "custom": return gr.update(visible=True) else: return gr.update(visible=False) def check_embedding_status(selected_item, item_mapping): if not selected_item: return "Please select an item", "", "" try: item_id = item_mapping.get(selected_item) if item_id is None: return f"Invalid item selected: {selected_item}", "", "" item_title = selected_item.rsplit(' (', 1)[0] collection = chroma_client.get_or_create_collection(name="all_content_embeddings") result = collection.get(ids=[f"doc_{item_id}_chunk_0"], include=["embeddings", "metadatas"]) logging.info(f"ChromaDB result for item '{item_title}' (ID: {item_id}): {result}") if not result['ids']: return f"No embedding found for item '{item_title}' (ID: {item_id})", "", "" if not result['embeddings'] or not result['embeddings'][0]: return f"Embedding data missing for item '{item_title}' (ID: {item_id})", "", "" embedding = result['embeddings'][0] metadata = result['metadatas'][0] if result['metadatas'] else {} embedding_preview = str(embedding[:50]) status = f"Embedding exists for item '{item_title}' (ID: {item_id})" return status, f"First 50 elements of embedding:\n{embedding_preview}", json.dumps(metadata, indent=2) except Exception as e: logging.error(f"Error in check_embedding_status: {str(e)}") return f"Error processing item: {selected_item}. Details: {str(e)}", "", "" def create_new_embedding_for_item(selected_item, provider, hf_model, openai_model, custom_model, api_url, method, max_size, overlap, adaptive, item_mapping, use_contextual, contextual_api_choice=None): if not selected_item: return "Please select an item", "", "" try: item_id = item_mapping.get(selected_item) if item_id is None: return f"Invalid item selected: {selected_item}", "", "" items = get_all_content_from_database() item = next((item for item in items if item['id'] == item_id), None) if not item: return f"Item not found: {item_id}", "", "" chunk_options = { 'method': method, 'max_size': max_size, 'overlap': overlap, 'adaptive': adaptive } logging.info(f"Chunking content for item: {item['title']} (ID: {item_id})") chunks = chunk_for_embedding(item['content'], item['title'], chunk_options) collection_name = "all_content_embeddings" collection = chroma_client.get_or_create_collection(name=collection_name) # Delete existing embeddings for this item existing_ids = [f"doc_{item_id}_chunk_{i}" for i in range(len(chunks))] collection.delete(ids=existing_ids) logging.info(f"Deleted {len(existing_ids)} existing embeddings for item {item_id}") texts, ids, metadatas = [], [], [] chunk_count = 0 logging.info("Generating contextual summaries and preparing chunks for embedding") for i, chunk in enumerate(chunks): chunk_text = chunk['text'] chunk_metadata = chunk['metadata'] if use_contextual: logging.debug(f"Generating contextual summary for chunk {chunk_count}") context = situate_context(contextual_api_choice, item['content'], chunk_text) contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}" else: contextualized_text = chunk_text context = None chunk_id = f"doc_{item_id}_chunk_{i}" # Determine the model to use if provider == "huggingface": model = custom_model if hf_model == "custom" else hf_model elif provider == "openai": model = openai_model else: model = custom_model metadata = { "media_id": str(item_id), "chunk_index": i, "total_chunks": len(chunks), "chunking_method": method, "max_chunk_size": max_size, "chunk_overlap": overlap, "adaptive_chunking": adaptive, "embedding_model": model, "embedding_provider": provider, "original_text": chunk_text, "use_contextual_embeddings": use_contextual, "contextual_summary": context, **chunk_metadata } texts.append(contextualized_text) ids.append(chunk_id) metadatas.append(metadata) chunk_count += 1 # Create embeddings in batch logging.info(f"Creating embeddings for {len(texts)} chunks") embeddings = create_embeddings_batch(texts, provider, model, api_url) # Store in Chroma store_in_chroma(collection_name, texts, embeddings, ids, metadatas) # Create a preview of the first embedding if isinstance(embeddings, np.ndarray) and embeddings.size > 0: embedding_preview = str(embeddings[0][:50]) elif isinstance(embeddings, list) and len(embeddings) > 0: embedding_preview = str(embeddings[0][:50]) else: embedding_preview = "No embeddings created" # Return status message status = f"New embeddings created and stored for item: {item['title']} (ID: {item_id})" # Add contextual summaries to status message if enabled if use_contextual: status += " (with contextual summaries)" # Return status message, embedding preview, and metadata return status, f"First 50 elements of new embedding:\n{embedding_preview}", json.dumps(metadatas[0], indent=2) except Exception as e: logging.error(f"Error in create_new_embedding_for_item: {str(e)}", exc_info=True) return f"Error creating embedding: {str(e)}", "", "" refresh_button.click( get_items_with_embedding_status, outputs=[item_dropdown, item_mapping] ) item_dropdown.change( check_embedding_status, inputs=[item_dropdown, item_mapping], outputs=[embedding_status, embedding_preview, embedding_metadata] ) create_new_embedding_button.click( create_new_embedding_for_item, inputs=[item_dropdown, embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url, chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, item_mapping, use_contextual_embeddings, contextual_api_choice], outputs=[embedding_status, embedding_preview, embedding_metadata] ) embedding_provider.change( update_provider_options, inputs=[embedding_provider], outputs=[huggingface_model, openai_model, custom_embedding_model, embedding_api_url] ) huggingface_model.change( update_huggingface_options, inputs=[huggingface_model], outputs=[custom_embedding_model] ) return (item_dropdown, refresh_button, embedding_status, embedding_preview, embedding_metadata, create_new_embedding_button, embedding_provider, huggingface_model, openai_model, custom_embedding_model, embedding_api_url, chunking_method, max_chunk_size, chunk_overlap, adaptive_chunking, use_contextual_embeddings, contextual_api_choice, contextual_api_key) def create_purge_embeddings_tab(): with gr.TabItem("Purge Embeddings"): gr.Markdown("# Purge Embeddings") with gr.Row(): with gr.Column(): purge_button = gr.Button("Purge All Embeddings") with gr.Column(): status_output = gr.Textbox(label="Status", lines=10) def purge_all_embeddings(): try: # It came to me in a dream....I literally don't remember how the fuck this works, cant find documentation... collection_name = "all_content_embeddings" chroma_client.delete_collection(collection_name) chroma_client.create_collection(collection_name) logging.info(f"All embeddings have been purged successfully.") return "All embeddings have been purged successfully." except Exception as e: logging.error(f"Error during embedding purge: {str(e)}") return f"Error: {str(e)}" purge_button.click( fn=purge_all_embeddings, outputs=status_output ) # # End of file ########################################################################################################################