# Summarization_General_Lib.py ######################################### # General Summarization Library # This library is used to perform summarization. # #### #################### # Function List # # 1. extract_text_from_segments(segments: List[Dict]) -> str # 2. summarize_with_openai(api_key, file_path, custom_prompt_arg) # 3. summarize_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5) # 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg) # 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg) # # #################### # Import necessary libraries import json import logging import os import time from typing import Optional import requests from requests import RequestException from App_Function_Libraries.Audio.Audio_Transcription_Lib import convert_to_wav, speech_to_text from App_Function_Libraries.Chunk_Lib import semantic_chunking, rolling_summarize, recursive_summarize_chunks, \ improved_chunking_process from App_Function_Libraries.Audio.Diarization_Lib import combine_transcription_and_diarization from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama, summarize_with_kobold, \ summarize_with_oobabooga, summarize_with_tabbyapi, summarize_with_vllm, summarize_with_local_llm, \ summarize_with_ollama, summarize_with_custom_openai from App_Function_Libraries.DB.DB_Manager import add_media_to_database # Import Local from App_Function_Libraries.Utils.Utils import load_and_log_configs, load_comprehensive_config, sanitize_filename, \ clean_youtube_url, create_download_directory, is_valid_url from App_Function_Libraries.Video_DL_Ingestion_Lib import download_video, extract_video_info # ####################################################################################################################### # Function Definitions # config = load_comprehensive_config() openai_api_key = config.get('API', 'openai_api_key', fallback=None) def summarize( input_data: str, custom_prompt_arg: Optional[str], api_name: str, api_key: Optional[str], temp: Optional[float], system_message: Optional[str] ) -> str: try: logging.debug(f"api_name type: {type(api_name)}, value: {api_name}") if api_name.lower() == "openai": return summarize_with_openai(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "anthropic": return summarize_with_anthropic(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "cohere": return summarize_with_cohere(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "groq": return summarize_with_groq(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "huggingface": return summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp) elif api_name.lower() == "openrouter": return summarize_with_openrouter(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "deepseek": return summarize_with_deepseek(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "mistral": return summarize_with_mistral(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "llama.cpp": return summarize_with_llama(input_data, custom_prompt_arg, api_key, temp, system_message) elif api_name.lower() == "kobold": return summarize_with_kobold(input_data, api_key, custom_prompt_arg, temp, system_message) elif api_name.lower() == "ooba": return summarize_with_oobabooga(input_data, api_key, custom_prompt_arg, temp, system_message) elif api_name.lower() == "tabbyapi": return summarize_with_tabbyapi(input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "vllm": return summarize_with_vllm(input_data, custom_prompt_arg, None, system_message) elif api_name.lower() == "local-llm": return summarize_with_local_llm(input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "huggingface": return summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp, )#system_message) elif api_name.lower() == "custom-openai": return summarize_with_custom_openai(api_key, input_data, custom_prompt_arg, temp, system_message) elif api_name.lower() == "ollama": return summarize_with_ollama(input_data, custom_prompt_arg, None, api_key, temp, system_message) else: return f"Error: Invalid API Name {api_name}" except Exception as e: logging.error(f"Error in summarize function: {str(e)}", exc_info=True) return f"Error: {str(e)}" def extract_text_from_segments(segments): logging.debug(f"Segments received: {segments}") logging.debug(f"Type of segments: {type(segments)}") text = "" if isinstance(segments, list): for segment in segments: logging.debug(f"Current segment: {segment}") logging.debug(f"Type of segment: {type(segment)}") if 'Text' in segment: text += segment['Text'] + " " else: logging.warning(f"Skipping segment due to missing 'Text' key: {segment}") else: logging.warning(f"Unexpected type of 'segments': {type(segments)}") return text.strip() def summarize_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): loaded_config_data = load_and_log_configs() try: # API key validation if not api_key or api_key.strip() == "": logging.info("OpenAI: #1 API key not provided as parameter") logging.info("OpenAI: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['openai'] if not api_key or api_key.strip() == "": logging.error("OpenAI: #2 API key not found or is empty") return "OpenAI: API Key Not Provided/Found in Config file or is empty" openai_api_key = api_key logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}") # Input data handling logging.debug(f"OpenAI: Raw input data type: {type(input_data)}") logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...") if isinstance(input_data, str): if input_data.strip().startswith('{'): # It's likely a JSON string logging.debug("OpenAI: Parsing provided JSON string data for summarization") try: data = json.loads(input_data) except json.JSONDecodeError as e: logging.error(f"OpenAI: Error parsing JSON string: {str(e)}") return f"OpenAI: Error parsing JSON input: {str(e)}" elif os.path.isfile(input_data): logging.debug("OpenAI: Loading JSON data from file for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("OpenAI: Using provided string data for summarization") data = input_data else: data = input_data logging.debug(f"OpenAI: Processed data type: {type(data)}") logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...") # Text extraction if isinstance(data, dict): if 'summary' in data: logging.debug("OpenAI: Summary already exists in the loaded data") return data['summary'] elif 'segments' in data: text = extract_text_from_segments(data['segments']) else: text = json.dumps(data) # Convert dict to string if no specific format elif isinstance(data, list): text = extract_text_from_segments(data) elif isinstance(data, str): text = data else: raise ValueError(f"OpenAI: Invalid input data format: {type(data)}") logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...") logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}") openai_model = loaded_config_data['models']['openai'] or "gpt-4o" logging.debug(f"OpenAI: Using model: {openai_model}") headers = { 'Authorization': f'Bearer {openai_api_key}', 'Content-Type': 'application/json' } logging.debug( f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}") logging.debug("openai: Preparing data + prompt for submittal") openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" if temp is None: temp = 0.7 if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." temp = float(temp) data = { "model": openai_model, "messages": [ {"role": "system", "content": system_message}, {"role": "user", "content": openai_prompt} ], "max_tokens": 4096, "temperature": temp } logging.debug("OpenAI: Posting request") response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) if response.status_code == 200: response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("OpenAI: Summarization successful") logging.debug(f"OpenAI: Summary (first 500 chars): {summary[:500]}...") return summary else: logging.warning("OpenAI: Summary not found in the response data") return "OpenAI: Summary not available" else: logging.error(f"OpenAI: Summarization failed with status code {response.status_code}") logging.error(f"OpenAI: Error response: {response.text}") return f"OpenAI: Failed to process summary. Status code: {response.status_code}" except json.JSONDecodeError as e: logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True) return f"OpenAI: Error decoding JSON input: {str(e)}" except requests.RequestException as e: logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True) return f"OpenAI: Error making API request: {str(e)}" except Exception as e: logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True) return f"OpenAI: Unexpected error occurred: {str(e)}" def summarize_with_anthropic(api_key, input_data, custom_prompt_arg, temp=None, system_message=None, max_retries=3, retry_delay=5): logging.debug("Anthropic: Summarization process starting...") try: logging.debug("Anthropic: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") anthropic_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): anthropic_api_key = api_key logging.info("Anthropic: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config anthropic_api_key = loaded_config_data['api_keys'].get('anthropic') if anthropic_api_key: logging.info("Anthropic: Using API key from config file") else: logging.warning("Anthropic: No API key found in config file") # Final check to ensure we have a valid API key if not anthropic_api_key or not anthropic_api_key.strip(): logging.error("Anthropic: No valid API key available") # You might want to raise an exception here or handle this case as appropriate for your application #FIXME # For example: raise ValueError("No valid Anthropic API key available") logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("AnthropicAI: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("AnthropicAI: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"AnthropicAI: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"AnthropicAI: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Anthropic: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Anthropic: Invalid input data format") if temp is None: temp = 0.1 temp = float(temp) if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." headers = { 'x-api-key': anthropic_api_key, 'anthropic-version': '2023-06-01', 'Content-Type': 'application/json' } anthropic_prompt = custom_prompt_arg logging.debug(f"Anthropic: Prompt is {anthropic_prompt}") user_message = { "role": "user", "content": f"{text} \n\n\n\n{anthropic_prompt}" } model = loaded_config_data['models']['anthropic'] data = { "model": model, "max_tokens": 4096, # max _possible_ tokens to return "messages": [user_message], "stop_sequences": ["\n\nHuman:"], "temperature": temp, "top_k": 0, "top_p": 1.0, "metadata": { "user_id": "example_user_id", }, "stream": False, "system": system_message } for attempt in range(max_retries): try: logging.debug("anthropic: Posting request to API") response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) # Check if the status code indicates success if response.status_code == 200: logging.debug("anthropic: Post submittal successful") response_data = response.json() try: summary = response_data['content'][0]['text'].strip() logging.debug("anthropic: Summarization successful") print("Summary processed successfully.") return summary except (IndexError, KeyError) as e: logging.debug("anthropic: Unexpected data in response") print("Unexpected response format from Anthropic API:", response.text) return None elif response.status_code == 500: # Handle internal server error specifically logging.debug("anthropic: Internal server error") print("Internal server error from API. Retrying may be necessary.") time.sleep(retry_delay) else: logging.debug( f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") print(f"Failed to process summary, status code {response.status_code}: {response.text}") return None except RequestException as e: logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}") if attempt < max_retries - 1: time.sleep(retry_delay) else: return f"anthropic: Network error: {str(e)}" except FileNotFoundError as e: logging.error(f"anthropic: File not found: {input_data}") return f"anthropic: File not found: {input_data}" except json.JSONDecodeError as e: logging.error(f"anthropic: Invalid JSON format in file: {input_data}") return f"anthropic: Invalid JSON format in file: {input_data}" except Exception as e: logging.error(f"anthropic: Error in processing: {str(e)}") return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}" # Summarize with Cohere def summarize_with_cohere(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): logging.debug("Cohere: Summarization process starting...") try: logging.debug("Cohere: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") cohere_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): cohere_api_key = api_key logging.info("Cohere: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config cohere_api_key = loaded_config_data['api_keys'].get('cohere') if cohere_api_key: logging.info("Cohere: Using API key from config file") else: logging.warning("Cohere: No API key found in config file") # Final check to ensure we have a valid API key if not cohere_api_key or not cohere_api_key.strip(): logging.error("Cohere: No valid API key available") # You might want to raise an exception here or handle this case as appropriate for your application # FIXME # For example: raise ValueError("No valid Anthropic API key available") if custom_prompt_arg is None: custom_prompt_arg = "" if system_message is None: system_message = "" logging.debug(f"Cohere: Using API Key: {cohere_api_key[:5]}...{cohere_api_key[-5:]}") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Cohere: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Cohere: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"Cohere: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"Cohere: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Cohere: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Invalid input data format") cohere_model = loaded_config_data['models']['cohere'] if temp is None: temp = 0.3 temp = float(temp) if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." headers = { 'accept': 'application/json', 'content-type': 'application/json', 'Authorization': f'Bearer {cohere_api_key}' } cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" logging.debug(f"cohere: Prompt being sent is {cohere_prompt}") data = { "preamble": system_message, "message": cohere_prompt, "model": cohere_model, # "connectors": [{"id": "web-search"}], "temperature": temp } logging.debug("cohere: Submitting request to API endpoint") response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: if 'text' in response_data: summary = response_data['text'].strip() logging.debug("cohere: Summarization successful") print("Summary processed successfully.") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." else: logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}") print(f"Failed to process summary, status code {response.status_code}: {response.text}") return f"cohere: API request failed: {response.text}" except Exception as e: logging.error("cohere: Error in processing: %s", str(e)) return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" # https://console.groq.com/docs/quickstart def summarize_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): logging.debug("Groq: Summarization process starting...") try: logging.debug("Groq: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") groq_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): groq_api_key = api_key logging.info("Groq: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config groq_api_key = loaded_config_data['api_keys'].get('groq') if groq_api_key: logging.info("Groq: Using API key from config file") else: logging.warning("Groq: No API key found in config file") # Final check to ensure we have a valid API key if not groq_api_key or not groq_api_key.strip(): logging.error("Anthropic: No valid API key available") # You might want to raise an exception here or handle this case as appropriate for your application # FIXME # For example: raise ValueError("No valid Anthropic API key available") logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}") # Transcript data handling & Validation if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Groq: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Groq: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"Groq: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Groq: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Groq: Invalid input data format") # Set the model to be used groq_model = loaded_config_data['models']['groq'] if temp is None: temp = 0.2 temp = float(temp) if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." headers = { 'Authorization': f'Bearer {groq_api_key}', 'Content-Type': 'application/json' } groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" logging.debug("groq: Prompt being sent is {groq_prompt}") data = { "messages": [ { "role": "system", "content": system_message, }, { "role": "user", "content": groq_prompt, } ], "model": groq_model, "temperature": temp } logging.debug("groq: Submitting request to API endpoint") print("groq: Submitting request to API endpoint") response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("groq: Summarization successful") print("Summarization successful.") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." else: logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") return f"groq: API request failed: {response.text}" except Exception as e: logging.error("groq: Error in processing: %s", str(e)) return f"groq: Error occurred while processing summary with groq: {str(e)}" def summarize_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): import requests import json global openrouter_model, openrouter_api_key try: logging.debug("OpenRouter: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") openrouter_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): openrouter_api_key = api_key logging.info("OpenRouter: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config openrouter_api_key = loaded_config_data['api_keys'].get('openrouter') if openrouter_api_key: logging.info("OpenRouter: Using API key from config file") else: logging.warning("OpenRouter: No API key found in config file") # Model Selection validation logging.debug("OpenRouter: Validating model selection") loaded_config_data = load_and_log_configs() openrouter_model = loaded_config_data['models']['openrouter'] logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}") # Final check to ensure we have a valid API key if not openrouter_api_key or not openrouter_api_key.strip(): logging.error("OpenRouter: No valid API key available") raise ValueError("No valid Anthropic API key available") except Exception as e: logging.error("OpenRouter: Error in processing: %s", str(e)) return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}" logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}") logging.debug(f"OpenRouter: Using Model: {openrouter_model}") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("OpenRouter: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("OpenRouter: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"OpenRouter: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("OpenRouter: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("OpenRouter: Invalid input data format") openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}" if temp is None: temp = 0.1 temp = float(temp) if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." try: logging.debug("OpenRouter: Submitting request to API endpoint") print("OpenRouter: Submitting request to API endpoint") response = requests.post( url="https://openrouter.ai/api/v1/chat/completions", headers={ "Authorization": f"Bearer {openrouter_api_key}", }, data=json.dumps({ "model": openrouter_model, "messages": [ {"role": "system", "content": system_message}, {"role": "user", "content": openrouter_prompt} ], "temperature": temp }) ) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("openrouter: Summarization successful") print("openrouter: Summarization successful.") return summary else: logging.error("openrouter: Expected data not found in API response.") return "openrouter: Expected data not found in API response." else: logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}") return f"openrouter: API request failed: {response.text}" except Exception as e: logging.error("openrouter: Error in processing: %s", str(e)) return f"openrouter: Error occurred while processing summary with openrouter: {str(e)}" def summarize_with_huggingface(api_key, input_data, custom_prompt_arg, temp=None): logging.debug("HuggingFace: Summarization process starting...") try: logging.debug("HuggingFace: Loading and validating configurations") if api_key: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): huggingface_api_key = api_key logging.info("HuggingFace: Using API key provided as parameter") else: huggingface_api_key = os.getenv('HF_TOKEN') # Final check to ensure we have a valid API key if not huggingface_api_key or not huggingface_api_key.strip(): logging.error("HuggingFace: No valid API key available") # You might want to raise an exception here or handle this case as appropriate for your application # FIXME # For example: raise ValueError("No valid Anthropic API key available") logging.debug(f"HuggingFace: Using API Key: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("HuggingFace: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("HuggingFace: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"HuggingFace: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"HuggingFace: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("HuggingFace: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("HuggingFace: Invalid input data format") headers = { "Authorization": f"Bearer {huggingface_api_key}" } huggingface_model = "meta-llama/Llama-3.1-70B-Instruct" API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}" if temp is None: temp = 0.1 temp = float(temp) huggingface_prompt = f"{custom_prompt_arg}\n\n\n{text}" logging.debug("huggingface: Prompt being sent is {huggingface_prompt}") data = { "inputs": huggingface_prompt, "max_tokens": 4096, "stream": False, "temperature": temp } logging.debug("huggingface: Submitting request...") response = requests.post(API_URL, headers=headers, json=data) if response.status_code == 200: print(response.json()) chat_response = response.json()[0]['generated_text'].strip() logging.debug("huggingface: Summarization successful") print("Chat request successful.") return chat_response else: logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") return f"Failed to process summary, status code {response.status_code}: {response.text}" except Exception as e: logging.error("huggingface: Error in processing: %s", str(e)) print(f"Error occurred while processing summary with huggingface: {str(e)}") return None def summarize_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): logging.debug("DeepSeek: Summarization process starting...") try: logging.debug("DeepSeek: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") deepseek_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): deepseek_api_key = api_key logging.info("DeepSeek: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config deepseek_api_key = loaded_config_data['api_keys'].get('deepseek') if deepseek_api_key: logging.info("DeepSeek: Using API key from config file") else: logging.warning("DeepSeek: No API key found in config file") # Final check to ensure we have a valid API key if not deepseek_api_key or not deepseek_api_key.strip(): logging.error("DeepSeek: No valid API key available") # You might want to raise an exception here or handle this case as appropriate for your application # FIXME # For example: raise ValueError("No valid deepseek API key available") logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}") # Input data handling if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("DeepSeek: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("DeepSeek: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"DeepSeek: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("DeepSeek: Summary already exists in the loaded data") return data['summary'] # Text extraction if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("DeepSeek: Invalid input data format") deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat" if temp is None: temp = 0.1 temp = float(temp) if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } logging.debug( f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}") logging.debug("openai: Preparing data + prompt for submittal") deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" data = { "model": deepseek_model, "messages": [ {"role": "system", "content": system_message}, {"role": "user", "content": deepseek_prompt} ], "stream": False, "temperature": temp } logging.debug("DeepSeek: Posting request") response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data) if response.status_code == 200: response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("DeepSeek: Summarization successful") return summary else: logging.warning("DeepSeek: Summary not found in the response data") return "DeepSeek: Summary not available" else: logging.error(f"DeepSeek: Summarization failed with status code {response.status_code}") logging.error(f"DeepSeek: Error response: {response.text}") return f"DeepSeek: Failed to process summary. Status code: {response.status_code}" except Exception as e: logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True) return f"DeepSeek: Error occurred while processing summary: {str(e)}" def summarize_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): logging.debug("Mistral: Summarization process starting...") try: logging.debug("Mistral: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") mistral_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): mistral_api_key = api_key logging.info("Mistral: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config mistral_api_key = loaded_config_data['api_keys'].get('mistral') if mistral_api_key: logging.info("Mistral: Using API key from config file") else: logging.warning("Mistral: No API key found in config file") # Final check to ensure we have a valid API key if not mistral_api_key or not mistral_api_key.strip(): logging.error("Mistral: No valid API key available") # You might want to raise an exception here or handle this case as appropriate for your application # FIXME # For example: raise ValueError("No valid deepseek API key available") logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}") # Input data handling if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Mistral: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Mistral: Using provided string data for summarization") data = input_data # DEBUG - Debug logging to identify sent data logging.debug(f"Mistral: Loaded data: {data[:500]}...(snipped to first 500 chars)") logging.debug(f"Mistral: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Mistral: Summary already exists in the loaded data") return data['summary'] # Text extraction if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Mistral: Invalid input data format") mistral_model = loaded_config_data['models']['mistral'] or "mistral-large-latest" if temp is None: temp = 0.2 temp = float(temp) if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." headers = { 'Authorization': f'Bearer {mistral_api_key}', 'Content-Type': 'application/json' } logging.debug( f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}") logging.debug("Mistral: Preparing data + prompt for submittal") mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} " data = { "model": mistral_model, "messages": [ {"role": "system", "content": system_message}, {"role": "user", "content": mistral_prompt} ], "temperature": temp, "top_p": 1, "max_tokens": 4096, "stream": "false", "safe_prompt": "false" } logging.debug("Mistral: Posting request") response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data) if response.status_code == 200: response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("Mistral: Summarization successful") return summary else: logging.warning("Mistral: Summary not found in the response data") return "Mistral: Summary not available" else: logging.error(f"Mistral: Summarization failed with status code {response.status_code}") logging.error(f"Mistral: Error response: {response.text}") return f"Mistral: Failed to process summary. Status code: {response.status_code}" except Exception as e: logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True) return f"Mistral: Error occurred while processing summary: {str(e)}" # # ####################################################################################################################### # # # Gradio File Processing # Handle multiple videos as input def process_video_urls(url_list, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, download_video_flag, download_audio, rolling_summarization, detail_level, question_box, keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic, semantic_chunk_size, semantic_chunk_overlap, recursive_summarization): global current_progress progress = [] # This must always be a list status = [] # This must always be a list if custom_prompt_input is None: custom_prompt_input = """ You are a bulleted notes specialist. ```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes. **Bulleted Note Creation Guidelines** **Headings**: - Based on referenced topics, not categories like quotes or terms - Surrounded by **bold** formatting - Not listed as bullet points - No space between headings and list items underneath **Emphasis**: - **Important terms** set in bold font - **Text ending in a colon**: also bolded **Review**: - Ensure adherence to specified format - Do not reference these instructions in your response.[INST] {{ .Prompt }} [/INST]""" def update_progress(index, url, message): progress.append(f"Processing {index + 1}/{len(url_list)}: {url}") # Append to list status.append(message) # Append to list return "\n".join(progress), "\n".join(status) # Return strings for display for index, url in enumerate(url_list): try: logging.info(f"Starting to process video {index + 1}/{len(url_list)}: {url}") transcription, summary, json_file_path, summary_file_path, _, _ = process_url(url=url, num_speakers=num_speakers, whisper_model=whisper_model, custom_prompt_input=custom_prompt_input, offset=offset, api_name=api_name, api_key=api_key, vad_filter=vad_filter, download_video_flag=download_video_flag, download_audio=download_audio, rolling_summarization=rolling_summarization, detail_level=detail_level, question_box=question_box, keywords=keywords, chunk_text_by_words=chunk_text_by_words, max_words=max_words, chunk_text_by_sentences=chunk_text_by_sentences, max_sentences=max_sentences, chunk_text_by_paragraphs=chunk_text_by_paragraphs, max_paragraphs=max_paragraphs, chunk_text_by_tokens=chunk_text_by_tokens, max_tokens=max_tokens, chunk_by_semantic=chunk_by_semantic, semantic_chunk_size=semantic_chunk_size, semantic_chunk_overlap=semantic_chunk_overlap, recursive_summarization=recursive_summarization) # Update progress and transcription properly current_progress, current_status = update_progress(index, url, "Video processed and ingested into the database.") logging.info(f"Successfully processed video {index + 1}/{len(url_list)}: {url}") time.sleep(1) except Exception as e: logging.error(f"Error processing video {index + 1}/{len(url_list)}: {url}") logging.error(f"Error details: {str(e)}") current_progress, current_status = update_progress(index, url, f"Error: {str(e)}") yield current_progress, current_status, None, None, None, None success_message = "All videos have been transcribed, summarized, and ingested into the database successfully." return current_progress, success_message, None, None, None, None def perform_transcription(video_path, offset, whisper_model, vad_filter, diarize=False, overwrite=False): temp_files = [] logging.info(f"Processing media: {video_path}") global segments_json_path audio_file_path = convert_to_wav(video_path, offset) logging.debug(f"Converted audio file: {audio_file_path}") temp_files.append(audio_file_path) logging.debug("Setting up segments JSON path") # Update path to include whisper model in filename base_path = audio_file_path.replace('.wav', '') segments_json_path = f"{base_path}-whisper_model-{whisper_model}.segments.json" temp_files.append(segments_json_path) if diarize: diarized_json_path = f"{base_path}-whisper_model-{whisper_model}.diarized.json" # Check if diarized JSON already exists and is valid if os.path.exists(diarized_json_path): logging.info(f"Diarized file already exists: {diarized_json_path}") try: with open(diarized_json_path, 'r', encoding='utf-8') as file: diarized_segments = json.load(file) # Check if segments are empty or invalid if not diarized_segments or not isinstance(diarized_segments, list): if not overwrite: logging.info("Overwrite flag not set. Existing file not overwritten.") return None, "Overwrite flag not set. Existing file not overwritten." logging.warning(f"Diarized JSON file is empty or invalid, re-generating: {diarized_json_path}") raise ValueError("Invalid diarized JSON file") # Check if segments contain expected content if not all('Text' in segment for segment in diarized_segments): if not overwrite: logging.info("Overwrite flag not set. Existing file not overwritten.") return None, "Overwrite flag not set. Existing file not overwritten." logging.warning(f"Diarized segments missing required fields, re-generating: {diarized_json_path}") raise ValueError("Invalid segment format") logging.debug(f"Loaded valid diarized segments from {diarized_json_path}") return audio_file_path, diarized_segments except (json.JSONDecodeError, ValueError) as e: if not overwrite: logging.info("Overwrite flag not set. Existing file not overwritten.") return None, "Overwrite flag not set. Existing file not overwritten." logging.error(f"Failed to read or parse the diarized JSON file: {e}") if os.path.exists(diarized_json_path): os.remove(diarized_json_path) # Generate new diarized transcription logging.info(f"Generating diarized transcription for {audio_file_path}") diarized_segments = combine_transcription_and_diarization(audio_file_path) # Validate diarized segments before saving if not diarized_segments or not isinstance(diarized_segments, list): logging.error("Generated diarized segments are empty or invalid") return None, None # Save diarized segments json_str = json.dumps(diarized_segments, indent=2) with open(diarized_json_path, 'w', encoding='utf-8') as f: f.write(json_str) return audio_file_path, diarized_segments # Non-diarized transcription try: # If segments file exists, try to load it if os.path.exists(segments_json_path): logging.info(f"Segments file already exists: {segments_json_path}") try: with open(segments_json_path, 'r', encoding='utf-8') as file: segments = json.load(file) # Check if segments are empty or invalid if not segments or not isinstance(segments, list): if not overwrite: logging.info("Overwrite flag not set. Existing file not overwritten.") return None, "Overwrite flag not set. Existing file not overwritten." raise ValueError("Invalid segments JSON file") # Check if segments contain expected content if not all( isinstance(segment, dict) and all(key in segment for key in ['Text', 'Time_Start', 'Time_End']) for segment in segments): if not overwrite: logging.info("Overwrite flag not set. Existing file not overwritten.") return None, "Overwrite flag not set. Existing file not overwritten." raise ValueError("Invalid segment format") logging.debug(f"Loaded valid segments from {segments_json_path}") return audio_file_path, segments except (json.JSONDecodeError, ValueError, KeyError) as e: if not overwrite: logging.info("Overwrite flag not set. Existing file not overwritten.") return None, "Overwrite flag not set. Existing file not overwritten." logging.error(f"Failed to read or parse the segments JSON file: {str(e)}") if os.path.exists(segments_json_path): os.remove(segments_json_path) # Generate new transcription if file doesn't exist audio_file, segments = re_generate_transcription(audio_file_path, whisper_model, vad_filter) if segments is None: logging.error("Failed to generate new transcription") return None, None return audio_file_path, segments except Exception as e: logging.error(f"Error in perform_transcription: {str(e)}") return None, None def re_generate_transcription(audio_file_path, whisper_model, vad_filter): global segments_json_path try: logging.info(f"Generating new transcription for {audio_file_path}") segments = speech_to_text(audio_file_path, whisper_model=whisper_model, vad_filter=vad_filter) # Print the first few segments for debugging logging.debug(f"First few segments from speech_to_text: {segments[:2] if segments else 'None'}") # Validate segments before saving if not segments or not isinstance(segments, list): logging.error("Generated segments are empty or invalid") return None, None # More detailed validation if not all(isinstance(segment, dict) and all(key in segment for key in ['Text', 'Time_Start', 'Time_End']) for segment in segments): logging.error("Generated segments are missing required fields or have invalid format") logging.debug(f"Segments structure: {segments[:2]}") # Log first two segments for debugging return None, None # Save segments to JSON json_str = json.dumps(segments, indent=2) with open(segments_json_path, 'w', encoding='utf-8') as f: f.write(json_str) logging.debug(f"Valid transcription segments saved to {segments_json_path}") return audio_file_path, segments except Exception as e: logging.error(f"Error in re_generate_transcription: {str(e)}") return None, None def save_transcription_and_summary(transcription_text, summary_text, download_path, info_dict): try: video_title = sanitize_filename(info_dict.get('title', 'Untitled')) # Handle different transcription_text formats if isinstance(transcription_text, dict): if 'transcription' in transcription_text: # Handle the case where it's a dict with 'transcription' key text_to_save = '\n'.join(segment['Text'] for segment in transcription_text['transcription']) else: # Handle other dictionary formats text_to_save = str(transcription_text) elif isinstance(transcription_text, list): # Handle list of segments text_to_save = '\n'.join(segment['Text'] for segment in transcription_text) else: # Handle string input text_to_save = str(transcription_text) # Validate the extracted text if not text_to_save or not text_to_save.strip(): logging.error("Transcription text is empty or contains only whitespace") return None, None # Save transcription transcription_file_path = os.path.join(download_path, f"{video_title}_transcription.txt") with open(transcription_file_path, 'w', encoding='utf-8') as f: f.write(text_to_save) # Save summary if available summary_file_path = None if summary_text: if isinstance(summary_text, str) and summary_text.strip(): summary_file_path = os.path.join(download_path, f"{video_title}_summary.txt") with open(summary_file_path, 'w', encoding='utf-8') as f: f.write(summary_text) else: logging.warning("Summary text is not a string or contains only whitespace") return transcription_file_path, summary_file_path except Exception as e: logging.error(f"Error in save_transcription_and_summary: {str(e)}", exc_info=True) return None, None def summarize_chunk(api_name, text, custom_prompt_input, api_key, temp=None, system_message=None): logging.debug("Entered 'summarize_chunk' function") try: result = summarize(text, custom_prompt_input, api_name, api_key, temp, system_message) if result is None or result.startswith("Error:"): logging.warning(f"Summarization with {api_name} failed: {result}") return None logging.info(f"Summarization with {api_name} successful") return result except Exception as e: logging.error(f"Error in summarize_chunk with {api_name}: {str(e)}", exc_info=True) return None def extract_metadata_and_content(input_data): metadata = {} content = "" if isinstance(input_data, str): if os.path.exists(input_data): with open(input_data, 'r', encoding='utf-8') as file: data = json.load(file) else: try: data = json.loads(input_data) except json.JSONDecodeError: return {}, input_data elif isinstance(input_data, dict): data = input_data else: return {}, str(input_data) # Extract metadata metadata['title'] = data.get('title', 'No title available') metadata['author'] = data.get('author', 'Unknown author') # Extract content if 'transcription' in data: content = extract_text_from_segments(data['transcription']) elif 'segments' in data: content = extract_text_from_segments(data['segments']) elif 'content' in data: content = data['content'] else: content = json.dumps(data) return metadata, content def format_input_with_metadata(metadata, content): formatted_input = f"Title: {metadata.get('title', 'No title available')}\n" formatted_input += f"Author: {metadata.get('author', 'Unknown author')}\n\n" formatted_input += content return formatted_input def perform_summarization(api_name, input_data, custom_prompt_input, api_key, recursive_summarization=False, temp=None, system_message=None): loaded_config_data = load_and_log_configs() logging.info("Starting summarization process...") if system_message is None: system_message = """ You are a bulleted notes specialist. ```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes. **Bulleted Note Creation Guidelines** **Headings**: - Based on referenced topics, not categories like quotes or terms - Surrounded by **bold** formatting - Not listed as bullet points - No space between headings and list items underneath **Emphasis**: - **Important terms** set in bold font - **Text ending in a colon**: also bolded **Review**: - Ensure adherence to specified format - Do not reference these instructions in your response.[INST] {{ .Prompt }} [/INST]""" try: logging.debug(f"Input data type: {type(input_data)}") logging.debug(f"Input data (first 500 chars): {str(input_data)[:500]}...") # Extract metadata and content metadata, content = extract_metadata_and_content(input_data) logging.debug(f"Extracted metadata: {metadata}") logging.debug(f"Extracted content (first 500 chars): {content[:500]}...") # Prepare a structured input for summarization structured_input = format_input_with_metadata(metadata, content) # Perform summarization on the structured input if recursive_summarization: chunk_options = { 'method': 'words', # or 'sentences', 'paragraphs', 'tokens' based on your preference 'max_size': 1000, # adjust as needed 'overlap': 100, # adjust as needed 'adaptive': False, 'multi_level': False, 'language': 'english' } chunks = improved_chunking_process(structured_input, chunk_options) logging.debug(f"Chunking process completed. Number of chunks: {len(chunks)}") logging.debug("Now performing recursive summarization on each chunk...") logging.debug("summary = recursive_summarize_chunks") summary = recursive_summarize_chunks([chunk['text'] for chunk in chunks], lambda x: summarize_chunk(api_name, x, custom_prompt_input, api_key), custom_prompt_input, temp, system_message) else: logging.debug("summary = summarize_chunk") summary = summarize_chunk(api_name, structured_input, custom_prompt_input, api_key, temp, system_message) # add some actual validation logic if summary is not None: logging.info(f"Summary generated using {api_name} API") if isinstance(input_data, str) and os.path.exists(input_data): summary_file_path = input_data.replace('.json', '_summary.txt') with open(summary_file_path, 'w', encoding='utf-8') as file: file.write(summary) else: logging.warning(f"Failed to generate summary using {api_name} API") logging.info("Summarization completed successfully.") return summary except requests.exceptions.ConnectionError: logging.error("Connection error while summarizing") except Exception as e: logging.error(f"Error summarizing with {api_name}: {str(e)}", exc_info=True) return f"An error occurred during summarization: {str(e)}" return None def extract_text_from_input(input_data): if isinstance(input_data, str): try: # Try to parse as JSON data = json.loads(input_data) except json.JSONDecodeError: # If not valid JSON, treat as plain text return input_data elif isinstance(input_data, dict): data = input_data else: return str(input_data) # Extract relevant fields from the JSON object text_parts = [] if 'title' in data: text_parts.append(f"Title: {data['title']}") if 'description' in data: text_parts.append(f"Description: {data['description']}") if 'transcription' in data: if isinstance(data['transcription'], list): transcription_text = ' '.join([segment.get('Text', '') for segment in data['transcription']]) elif isinstance(data['transcription'], str): transcription_text = data['transcription'] else: transcription_text = str(data['transcription']) text_parts.append(f"Transcription: {transcription_text}") elif 'segments' in data: segments_text = extract_text_from_segments(data['segments']) text_parts.append(f"Segments: {segments_text}") return '\n\n'.join(text_parts) def process_url( url, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, download_video_flag, download_audio, rolling_summarization, detail_level, # It's for the asking a question about a returned prompt - needs to be removed #FIXME question_box, keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic, semantic_chunk_size, semantic_chunk_overlap, local_file_path=None, diarize=False, recursive_summarization=False, temp=None, system_message=None): # Handle the chunk summarization options set_chunk_txt_by_words = chunk_text_by_words set_max_txt_chunk_words = max_words set_chunk_txt_by_sentences = chunk_text_by_sentences set_max_txt_chunk_sentences = max_sentences set_chunk_txt_by_paragraphs = chunk_text_by_paragraphs set_max_txt_chunk_paragraphs = max_paragraphs set_chunk_txt_by_tokens = chunk_text_by_tokens set_max_txt_chunk_tokens = max_tokens set_chunk_txt_by_semantic = chunk_by_semantic set_semantic_chunk_size = semantic_chunk_size set_semantic_chunk_overlap = semantic_chunk_overlap progress = [] success_message = "All videos processed successfully. Transcriptions and summaries have been ingested into the database." # Validate input if not url and not local_file_path: return "Process_URL: No URL provided.", "No URL provided.", None, None, None, None, None, None if isinstance(url, str): urls = url.strip().split('\n') if len(urls) > 1: return process_video_urls(urls, num_speakers, whisper_model, custom_prompt_input, offset, api_name, api_key, vad_filter, download_video_flag, download_audio, rolling_summarization, detail_level, question_box, keywords, chunk_text_by_words, max_words, chunk_text_by_sentences, max_sentences, chunk_text_by_paragraphs, max_paragraphs, chunk_text_by_tokens, max_tokens, chunk_by_semantic, semantic_chunk_size, semantic_chunk_overlap, recursive_summarization) else: urls = [url] if url and not is_valid_url(url): return "Process_URL: Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None if url: # Clean the URL to remove playlist parameters if any url = clean_youtube_url(url) logging.info(f"Process_URL: Processing URL: {url}") if api_name: print("Process_URL: API Name received:", api_name) # Debugging line video_file_path = None global info_dict # If URL/Local video file is provided try: info_dict, title = extract_video_info(url) download_path = create_download_directory(title) current_whsiper_model = whisper_model video_path = download_video(url, download_path, info_dict, download_video_flag, current_whsiper_model) global segments audio_file_path, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) if diarize: transcription_text = combine_transcription_and_diarization(audio_file_path) else: audio_file, segments = perform_transcription(video_path, offset, whisper_model, vad_filter) transcription_text = {'audio_file': audio_file, 'transcription': segments} if audio_file_path is None or segments is None: logging.error("Process_URL: Transcription failed or segments not available.") return "Process_URL: Transcription failed.", "Transcription failed.", None, None, None, None logging.debug(f"Process_URL: Transcription audio_file: {audio_file_path}") logging.debug(f"Process_URL: Transcription segments: {segments}") logging.debug(f"Process_URL: Transcription text: {transcription_text}") # FIXME - Implement chunking calls here # Implement chunking calls here chunked_transcriptions = [] if chunk_text_by_words: chunked_transcriptions = chunk_text_by_words(transcription_text['transcription'], max_words) elif chunk_text_by_sentences: chunked_transcriptions = chunk_text_by_sentences(transcription_text['transcription'], max_sentences) elif chunk_text_by_paragraphs: chunked_transcriptions = chunk_text_by_paragraphs(transcription_text['transcription'], max_paragraphs) elif chunk_text_by_tokens: chunked_transcriptions = chunk_text_by_tokens(transcription_text['transcription'], max_tokens) elif chunk_by_semantic: chunked_transcriptions = semantic_chunking(transcription_text['transcription'], semantic_chunk_size, 'tokens') # If we did chunking, we now have the chunked transcripts in 'chunked_transcriptions' elif rolling_summarization: # FIXME - rolling summarization # text = extract_text_from_segments(segments) # summary_text = rolling_summarize_function( # transcription_text, # detail=detail_level, # api_name=api_name, # api_key=api_key, # custom_prompt_input=custom_prompt_input, # chunk_by_words=chunk_text_by_words, # max_words=max_words, # chunk_by_sentences=chunk_text_by_sentences, # max_sentences=max_sentences, # chunk_by_paragraphs=chunk_text_by_paragraphs, # max_paragraphs=max_paragraphs, # chunk_by_tokens=chunk_text_by_tokens, # max_tokens=max_tokens # ) pass else: pass summarized_chunk_transcriptions = [] if chunk_text_by_words or chunk_text_by_sentences or chunk_text_by_paragraphs or chunk_text_by_tokens or chunk_by_semantic and api_name: # Perform summarization based on chunks for chunk in chunked_transcriptions: summarized_chunks = [] if api_name == "anthropic": summary = summarize_with_anthropic(api_key, chunk, custom_prompt_input) elif api_name == "cohere": summary = summarize_with_cohere(api_key, chunk, custom_prompt_input, temp, system_message) elif api_name == "openai": summary = summarize_with_openai(api_key, chunk, custom_prompt_input, temp, system_message) elif api_name == "Groq": summary = summarize_with_groq(api_key, chunk, custom_prompt_input, temp, system_message) elif api_name == "DeepSeek": summary = summarize_with_deepseek(api_key, chunk, custom_prompt_input, temp, system_message) elif api_name == "OpenRouter": summary = summarize_with_openrouter(api_key, chunk, custom_prompt_input, temp, system_message) # Local LLM APIs elif api_name == "Llama.cpp": summary = summarize_with_llama(chunk, custom_prompt_input, api_key, temp, system_message) elif api_name == "Kobold": summary = summarize_with_kobold(chunk, None, custom_prompt_input, system_message, temp) elif api_name == "Ooba": summary = summarize_with_oobabooga(chunk, None, custom_prompt_input, system_message, temp) elif api_name == "Tabbyapi": summary = summarize_with_tabbyapi(chunk, custom_prompt_input, system_message, None, temp) elif api_name == "VLLM": summary = summarize_with_vllm(chunk, custom_prompt_input, None, None, system_message) elif api_name == "Ollama": summary = summarize_with_ollama(chunk, custom_prompt_input, api_key, temp, system_message, None) elif api_name == "custom_openai_api": summary = summarize_with_custom_openai(chunk, custom_prompt_input, api_key, temp=None, system_message=None) summarized_chunk_transcriptions.append(summary) # Combine chunked transcriptions into a single file combined_transcription_text = '\n\n'.join(chunked_transcriptions) combined_transcription_file_path = os.path.join(download_path, 'combined_transcription.txt') with open(combined_transcription_file_path, 'w') as f: f.write(combined_transcription_text) # Combine summarized chunk transcriptions into a single file combined_summary_text = '\n\n'.join(summarized_chunk_transcriptions) combined_summary_file_path = os.path.join(download_path, 'combined_summary.txt') with open(combined_summary_file_path, 'w') as f: f.write(combined_summary_text) # Handle rolling summarization if rolling_summarization: summary_text = rolling_summarize( text=extract_text_from_segments(segments), detail=detail_level, model='gpt-4-turbo', additional_instructions=custom_prompt_input, summarize_recursively=recursive_summarization ) elif api_name: summary_text = perform_summarization(api_name, segments_json_path, custom_prompt_input, api_key, recursive_summarization, temp=None) else: summary_text = 'Summary not available' # Check to see if chunking was performed, and if so, return that instead if chunk_text_by_words or chunk_text_by_sentences or chunk_text_by_paragraphs or chunk_text_by_tokens or chunk_by_semantic: # Combine chunked transcriptions into a single file # FIXME - validate this works.... json_file_path, summary_file_path = save_transcription_and_summary(combined_transcription_file_path, combined_summary_file_path, download_path, info_dict) add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model) return transcription_text, summary_text, json_file_path, summary_file_path, None, None else: json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text, download_path, info_dict) add_media_to_database(url, info_dict, segments, summary_text, keywords, custom_prompt_input, whisper_model) return transcription_text, summary_text, json_file_path, summary_file_path, None, None except Exception as e: logging.error(f": {e}") return str(e), 'process_url: Error processing the request.', None, None, None, None # # ############################################################################################################################################