File size: 5,799 Bytes
ef366f8
 
 
 
 
 
 
 
040958c
2ca7bf0
 
 
ef366f8
 
 
 
040958c
ef366f8
2ca7bf0
69fefa5
ef366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94809e9
ef366f8
94809e9
ef366f8
 
 
040958c
a857304
ef366f8
 
 
 
 
 
 
a857304
 
ef366f8
 
 
 
 
 
 
b604dd0
ef366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
040958c
ef366f8
040958c
bae63fc
ef366f8
 
e86f2ba
ef366f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4cda74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os

import gradio as gr

from text_generation import Client, InferenceAPIClient


def get_client(model: str):
    if model == "Rallio67/joi2_20B_instruct_alpha":
        return Client(os.getenv("JOI_API_URL"))
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return Client(os.getenv("OPENCHAT_API_URL"))
    return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))


def get_usernames(model: str):
    if model == "Rallio67/joi2_20B_instruct_alpha":
        return "User: ", "Joi: "
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return "<human>: ", "<bot>: "
    return "User: ", "Assistant: "


def predict(
        model: str,
        inputs: str,
        top_p: float,
        temperature: float,
        top_k: int,
        repetition_penalty: float,
        watermark: bool,
        chatbot,
        history,
):
    client = get_client(model)
    user_name, assistant_name = get_usernames(model)

    history.append(inputs)

    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith("\n\n" + assistant_name):
            model_data = "\n\n" + assistant_name + model_data

        past.append(user_data + model_data + "\n\n")

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = "".join(past) + inputs + "\n\n" + assistant_name

    partial_words = ""

    for i, response in enumerate(client.generate_stream(
            total_inputs,
            top_p=top_p if top_p < 1.0 else None,
            top_k=top_k,
            truncate=1000,
            repetition_penalty=repetition_penalty,
            watermark=watermark,
            temperature=temperature,
            max_new_tokens=500,
            stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
    )):
        if response.token.special:
            continue

        partial_words = partial_words + response.token.text
        if partial_words.endswith(user_name.rstrip()):
            partial_words = partial_words.rstrip(user_name.rstrip())
        if partial_words.endswith(assistant_name.rstrip()):
            partial_words = partial_words.rstrip(assistant_name.rstrip())

        if i == 0:
            history.append(" " + partial_words)
        else:
            history[-1] = partial_words

        chat = [
            (history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)
        ]
        yield chat, history


def reset_textbox():
    return gr.update(value="")


title = """<h1 align="center">🔥Large Language Model API 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:

```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```

In this app, you can explore the outputs of multiple LLMs when prompted in this way.
"""

with gr.Blocks(
        css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}"""
) as demo:
    gr.HTML(title)
    with gr.Column(elem_id="col_container"):
        model = gr.Radio(
            value="Rallio67/joi2_20B_instruct_alpha",
            choices=[
                "Rallio67/joi2_20B_instruct_alpha",
                # "togethercomputer/GPT-NeoXT-Chat-Base-20B",
                "google/flan-t5-xxl",
                "google/flan-ul2",
                "bigscience/bloom",
                "bigscience/bloomz",
                "EleutherAI/gpt-neox-20b",
            ],
            label="Model",
            interactive=True,
        )
        chatbot = gr.Chatbot(elem_id="chatbot")
        inputs = gr.Textbox(
            placeholder="Hi there!", label="Type an input and press Enter"
        )
        state = gr.State([])
        b1 = gr.Button()

        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.95,
                step=0.05,
                interactive=True,
                label="Top-p (nucleus sampling)",
            )
            temperature = gr.Slider(
                minimum=-0,
                maximum=5.0,
                value=0.5,
                step=0.1,
                interactive=True,
                label="Temperature",
            )
            top_k = gr.Slider(
                minimum=1,
                maximum=50,
                value=4,
                step=1,
                interactive=True,
                label="Top-k",
            )
            repetition_penalty = gr.Slider(
                minimum=0.1,
                maximum=3.0,
                value=1.03,
                step=0.01,
                interactive=True,
                label="Repetition Penalty",
            )
            watermark = gr.Checkbox(value=True, label="Text watermarking")

    inputs.submit(
        predict,
        [
            model,
            inputs,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
    )
    b1.click(
        predict,
        [
            model,
            inputs,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
    )
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

    gr.Markdown(description)
    demo.queue(concurrency_count=16).launch(debug=True)