Spaces:
Runtime error
Runtime error
File size: 5,799 Bytes
ef366f8 040958c 2ca7bf0 ef366f8 040958c ef366f8 2ca7bf0 69fefa5 ef366f8 94809e9 ef366f8 94809e9 ef366f8 040958c a857304 ef366f8 a857304 ef366f8 b604dd0 ef366f8 040958c ef366f8 040958c bae63fc ef366f8 e86f2ba ef366f8 e4cda74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import gradio as gr
from text_generation import Client, InferenceAPIClient
def get_client(model: str):
if model == "Rallio67/joi2_20B_instruct_alpha":
return Client(os.getenv("JOI_API_URL"))
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return Client(os.getenv("OPENCHAT_API_URL"))
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
def get_usernames(model: str):
if model == "Rallio67/joi2_20B_instruct_alpha":
return "User: ", "Joi: "
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return "<human>: ", "<bot>: "
return "User: ", "Assistant: "
def predict(
model: str,
inputs: str,
top_p: float,
temperature: float,
top_k: int,
repetition_penalty: float,
watermark: bool,
chatbot,
history,
):
client = get_client(model)
user_name, assistant_name = get_usernames(model)
history.append(inputs)
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith("\n\n" + assistant_name):
model_data = "\n\n" + assistant_name + model_data
past.append(user_data + model_data + "\n\n")
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = "".join(past) + inputs + "\n\n" + assistant_name
partial_words = ""
for i, response in enumerate(client.generate_stream(
total_inputs,
top_p=top_p if top_p < 1.0 else None,
top_k=top_k,
truncate=1000,
repetition_penalty=repetition_penalty,
watermark=watermark,
temperature=temperature,
max_new_tokens=500,
stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
)):
if response.token.special:
continue
partial_words = partial_words + response.token.text
if partial_words.endswith(user_name.rstrip()):
partial_words = partial_words.rstrip(user_name.rstrip())
if partial_words.endswith(assistant_name.rstrip()):
partial_words = partial_words.rstrip(assistant_name.rstrip())
if i == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [
(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)
]
yield chat, history
def reset_textbox():
return gr.update(value="")
title = """<h1 align="center">🔥Large Language Model API 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of multiple LLMs when prompted in this way.
"""
with gr.Blocks(
css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}"""
) as demo:
gr.HTML(title)
with gr.Column(elem_id="col_container"):
model = gr.Radio(
value="Rallio67/joi2_20B_instruct_alpha",
choices=[
"Rallio67/joi2_20B_instruct_alpha",
# "togethercomputer/GPT-NeoXT-Chat-Base-20B",
"google/flan-t5-xxl",
"google/flan-ul2",
"bigscience/bloom",
"bigscience/bloomz",
"EleutherAI/gpt-neox-20b",
],
label="Model",
interactive=True,
)
chatbot = gr.Chatbot(elem_id="chatbot")
inputs = gr.Textbox(
placeholder="Hi there!", label="Type an input and press Enter"
)
state = gr.State([])
b1 = gr.Button()
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
temperature = gr.Slider(
minimum=-0,
maximum=5.0,
value=0.5,
step=0.1,
interactive=True,
label="Temperature",
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=4,
step=1,
interactive=True,
label="Top-k",
)
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=3.0,
value=1.03,
step=0.01,
interactive=True,
label="Repetition Penalty",
)
watermark = gr.Checkbox(value=True, label="Text watermarking")
inputs.submit(
predict,
[
model,
inputs,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state],
)
b1.click(
predict,
[
model,
inputs,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state],
)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
gr.Markdown(description)
demo.queue(concurrency_count=16).launch(debug=True)
|