Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,813 Bytes
344bc31 990acce 94d19e9 1be4b11 344bc31 1be4b11 94d19e9 344bc31 94d19e9 47768b2 94d19e9 47768b2 1be4b11 344bc31 49f86c8 94d19e9 8d92093 50942e0 1be4b11 344bc31 50942e0 344bc31 1be4b11 344bc31 47768b2 49f86c8 1be4b11 344bc31 49f86c8 344bc31 1be4b11 344bc31 1be4b11 344bc31 49f86c8 1be4b11 94d19e9 344bc31 1be4b11 49f86c8 1be4b11 49f86c8 1be4b11 50942e0 1be4b11 49f86c8 1be4b11 49d986a 47768b2 1be4b11 94d19e9 1be4b11 49f86c8 94d19e9 49f86c8 50942e0 1be4b11 49f86c8 1be4b11 49f86c8 94d19e9 49f86c8 50942e0 1be4b11 49f86c8 1be4b11 344bc31 d31ac85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import supervision as sv
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import spaces
from helpers.file_utils import create_directory, delete_directory, generate_unique_name
from helpers.segment_utils import parse_segmentation, extract_objs
import os
BOX_ANNOTATOR = sv.BoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
VIDEO_TARGET_DIRECTORY = "tmp"
VAE_MODEL = "vae-oid.npz"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
INTRO_TEXT = """
## PaliGemma 2 Detection/Segmentation with Supervision - Demo
<div style="display: flex; gap: 10px;">
<a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md">
<img src="https://img.shields.io/badge/Github-100000?style=flat&logo=github&logoColor=white" alt="Github">
</a>
<a href="https://huggingface.co/blog/paligemma">
<img src="https://img.shields.io/badge/Huggingface-FFD21E?style=flat&logo=Huggingface&logoColor=black" alt="Huggingface">
</a>
<a href="https://github.com/merveenoyan/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab">
</a>
<a href="https://arxiv.org/abs/2412.03555">
<img src="https://img.shields.io/badge/Arvix-B31B1B?style=flat&logo=arXiv&logoColor=white" alt="Paper">
</a>
<a href="https://supervision.roboflow.com/">
<img src="https://img.shields.io/badge/Supervision-6706CE?style=flat&logo=Roboflow&logoColor=white" alt="Supervision">
</a>
</div>
PaliGemma 2 is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
vision model and the [Gemma 2](https://arxiv.org/abs/2408.00118) language model. PaliGemma 2 is designed as a versatile
model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question
answering, text reading, object detection and object segmentation.
This space show how to use PaliGemma 2 for object detection with supervision.
You can input an image and a text prompt
"""
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
model_id = "google/paligemma2-3b-pt-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(DEVICE)
processor = PaliGemmaProcessor.from_pretrained(model_id)
def parse_class_names(prompt):
if not prompt.lower().startswith('detect '):
return []
classes_text = prompt[7:].strip()
return [cls.strip() for cls in classes_text.split(';') if cls.strip()]
def parse_prompt_type(prompt):
"""Determine if the prompt is for detection or segmentation."""
if prompt.lower().startswith('detect '):
return 'detection', prompt[7:].strip()
elif prompt.lower().startswith('segment '):
return 'segmentation', prompt[8:].strip()
return None, prompt
@spaces.GPU
def paligemma_detection(input_image, input_text, max_new_tokens):
model_inputs = processor(text=input_text,
images=input_image,
return_tensors="pt"
).to(torch.bfloat16).to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False)
generation = generation[0][input_len:]
result = processor.decode(generation, skip_special_tokens=True)
return result
def annotate_image(result, resolution_wh, prompt, cv_image):
class_names = parse_class_names(prompt)
if not class_names:
gr.Warning("Invalid prompt format. Please use 'detect class1;class2;class3' format")
return cv_image
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
result,
resolution_wh=resolution_wh,
classes=class_names
)
annotated_image = BOX_ANNOTATOR.annotate(
scene=cv_image.copy(),
detections=detections
)
annotated_image = LABEL_ANNOTATOR.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = MASK_ANNOTATOR.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
annotated_image = Image.fromarray(annotated_image)
return annotated_image
def process_image(input_image, input_text, max_new_tokens):
cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
prompt_type, cleaned_prompt = parse_prompt_type(input_text)
if prompt_type == 'detection':
# Existing detection logic
result = paligemma_detection(input_image, input_text, max_new_tokens)
class_names = [cls.strip() for cls in cleaned_prompt.split(';') if cls.strip()]
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
result,
resolution_wh=(input_image.width, input_image.height),
classes=class_names
)
annotated_image = BOX_ANNOTATOR.annotate(scene=cv_image.copy(), detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
annotated_image = MASK_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
elif prompt_type == 'segmentation':
# New segmentation logic
result = paligemma_detection(input_image, input_text, max_new_tokens)
objs = extract_objs(result.lstrip("\n"), input_image.width, input_image.height, unique_labels=True)
# Create masks and annotations
annotated_image = cv_image.copy()
for obj in objs:
if 'mask' in obj and obj['mask'] is not None:
mask = obj['mask']
# Convert mask to uint8 for visualization
mask_vis = (mask * 255).astype(np.uint8)
# Create colored mask
colored_mask = np.zeros_like(cv_image)
color_idx = hash(obj['name']) % len(COLORS)
color = tuple(int(COLORS[color_idx].lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
colored_mask[mask > 0] = color
# Blend mask with image
alpha = 0.5
annotated_image = cv2.addWeighted(annotated_image, 1, colored_mask, alpha, 0)
# Add label
if 'xyxy' in obj:
x1, y1, x2, y2 = obj['xyxy']
cv2.putText(annotated_image, obj['name'], (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
else:
gr.Warning("Invalid prompt format. Please use 'detect' or 'segment' followed by class names")
return input_image, "Invalid prompt format"
# Convert back to RGB for display
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
annotated_image = Image.fromarray(annotated_image)
return annotated_image, result
@spaces.GPU
def process_video(input_video, input_text, max_new_tokens, progress=gr.Progress(track_tqdm=True)):
if not input_video:
gr.Info("Please upload a video.")
return None
if not input_text:
gr.Info("Please enter a text prompt.")
return None
class_names = parse_class_names(input_text)
if not class_names:
gr.Warning("Invalid prompt format. Please use 'detect class1;class2;class3' format")
return None, None
name = generate_unique_name()
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
create_directory(frame_directory_path)
video_info = sv.VideoInfo.from_video_path(input_video)
frame_generator = sv.get_video_frames_generator(input_video)
video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
results = []
with sv.VideoSink(video_path, video_info=video_info) as sink:
for frame in progress.tqdm(frame_generator, desc="Processing video"):
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
model_inputs = processor(
text=input_text,
images=pil_frame,
return_tensors="pt"
).to(torch.bfloat16).to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False)
generation = generation[0][input_len:]
result = processor.decode(generation, skip_special_tokens=True)
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
result,
resolution_wh=(video_info.width, video_info.height),
classes=class_names
)
annotated_frame = BOX_ANNOTATOR.annotate(
scene=frame.copy(),
detections=detections
)
annotated_frame = LABEL_ANNOTATOR.annotate(
scene=annotated_frame,
detections=detections
)
annotated_frame = MASK_ANNOTATOR.annotate(
scene=annotated_frame,
detections=detections
)
results.append(result)
sink.write_frame(annotated_frame)
delete_directory(frame_directory_path)
return video_path, results
with gr.Blocks() as app:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Image Detection/Segmentation"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
input_text = gr.Textbox(
lines=2,
placeholder="Enter prompt in format like this: detect person;dog;building or segment person;dog;building",
label="Enter detection prompt"
)
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=10, label="Max New Tokens", info="Set to larger for longer generation.")
with gr.Column():
annotated_image = gr.Image(type="pil", label="Annotated Image")
detection_result = gr.Textbox(label="Detection Result")
gr.Button("Submit").click(
fn=process_image,
inputs=[input_image, input_text, max_new_tokens],
outputs=[annotated_image, detection_result]
)
with gr.Tab("Video Detection"):
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
input_text = gr.Textbox(
lines=2,
placeholder="Enter prompt in format like this: detect person;dog;building or segment person;dog;building",
label="Enter detection prompt"
)
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=1, label="Max New Tokens", info="Set to larger for longer generation.")
with gr.Column():
output_video = gr.Video(label="Annotated Video")
detection_result = gr.Textbox(label="Detection Result")
gr.Button("Process Video").click(
fn=process_video,
inputs=[input_video, input_text, max_new_tokens],
outputs=[output_video, detection_result]
)
if __name__ == "__main__":
app.launch(ssr_mode=False) |