from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import torch import supervision as sv import cv2 import numpy as np from PIL import Image import gradio as gr import spaces from helpers.utils import create_directory, delete_directory, generate_unique_name import os BOX_ANNOTATOR = sv.BoxAnnotator() LABEL_ANNOTATOR = sv.LabelAnnotator() MASK_ANNOTATOR = sv.MaskAnnotator() DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") VIDEO_TARGET_DIRECTORY = "tmp" INTRO_TEXT = """ ## PaliGemma 2 Detection with Supervision - Demo
Github Huggingface Colab Paper Supervision
PaliGemma 2 is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343) vision model and the [Gemma 2](https://arxiv.org/abs/2408.00118) language model. PaliGemma 2 is designed as a versatile model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question answering, text reading, object detection and object segmentation. This space show how to use PaliGemma 2 for object detection with supervision. You can input an image and a text prompt """ create_directory(directory_path=VIDEO_TARGET_DIRECTORY) model_id = "google/paligemma2-3b-pt-448" model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(DEVICE) processor = PaliGemmaProcessor.from_pretrained(model_id) @spaces.GPU def paligemma_detection(input_image, input_text, max_new_tokens): model_inputs = processor(text=input_text, images=input_image, return_tensors="pt" ).to(torch.bfloat16).to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False) generation = generation[0][input_len:] result = processor.decode(generation, skip_special_tokens=True) return result def annotate_image(result, resolution_wh, class_names, cv_image): detections = sv.Detections.from_lmm( sv.LMM.PALIGEMMA, result, resolution_wh=resolution_wh, classes=class_names.split(',') ) annotated_image = BOX_ANNOTATOR.annotate( scene=cv_image.copy(), detections=detections ) annotated_image = LABEL_ANNOTATOR.annotate( scene=annotated_image, detections=detections ) annotated_image = MASK_ANNOTATOR.annotate( scene=annotated_image, detections=detections ) annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) annotated_image = Image.fromarray(annotated_image) return annotated_image def process_image(input_image, input_text, class_names, max_new_tokens): cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) result = paligemma_detection(input_image, input_text, max_new_tokens) annotated_image = annotate_image(result, (input_image.width, input_image.height), class_names, cv_image) return annotated_image, result @spaces.GPU def process_video(input_video, input_text, class_names, max_new_tokens, progress=gr.Progress(track_tqdm=True)): if not input_video: gr.Info("Please upload a video.") return None if not input_text: gr.Info("Please enter a text prompt.") return None name = generate_unique_name() frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name) create_directory(frame_directory_path) video_info = sv.VideoInfo.from_video_path(input_video) frame_generator = sv.get_video_frames_generator(input_video) video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4") results = [] with sv.VideoSink(video_path, video_info=video_info) as sink: for frame in progress.tqdm(frame_generator, desc="Processing video"): pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) model_inputs = processor( text=input_text, images=pil_frame, return_tensors="pt" ).to(torch.bfloat16).to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=max_new_tokens, do_sample=False) generation = generation[0][input_len:] result = processor.decode(generation, skip_special_tokens=True) detections = sv.Detections.from_lmm( sv.LMM.PALIGEMMA, result, resolution_wh=(video_info.width, video_info.height), classes=class_names.split(',') ) annotated_frame = BOX_ANNOTATOR.annotate( scene=frame.copy(), detections=detections ) annotated_frame = LABEL_ANNOTATOR.annotate( scene=annotated_frame, detections=detections ) annotated_frame = MASK_ANNOTATOR.annotate( scene=annotated_frame, detections=detections ) results.append(result) sink.write_frame(annotated_frame) delete_directory(frame_directory_path) return video_path, results with gr.Blocks() as app: gr.Markdown(INTRO_TEXT) with gr.Tab("Image Detection"): with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input Image") input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter prompt for example 'detect person;dog") class_names = gr.Textbox(lines=1, placeholder="Enter class names separated by commas...", label="Class Names") max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=10, label="Max New Tokens", info="Set to larger for longer generation.") with gr.Column(): annotated_image = gr.Image(type="pil", label="Annotated Image") detection_result = gr.Textbox(label="Detection Result") gr.Button("Submit").click( fn=process_image, inputs=[input_image, input_text, class_names, max_new_tokens], outputs=[annotated_image, detection_result] ) with gr.Tab("Video Detection"): with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter prompt for example 'detect person;dog") class_names = gr.Textbox(lines=1, placeholder="Enter class names separated by commas...", label="Class Names") max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=1, label="Max New Tokens", info="Set to larger for longer generation.") with gr.Column(): output_video = gr.Video(label="Annotated Video") detection_result = gr.Textbox(label="Detection Result") gr.Button("Process Video").click( fn=process_video, inputs=[input_video, input_text, class_names, max_new_tokens], outputs=[output_video, detection_result] ) if __name__ == "__main__": app.launch(ssr_mode=False)