Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,506 Bytes
0c7ef71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
from huggingface_hub import HfApi, ModelFilter, snapshot_download
from huggingface_hub import ModelCard
import json
import os
import time
import shutil
from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_size
from src.envs import DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, API
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TMP_FOLDER = "tmp_requests"
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=TMP_FOLDER, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
# Get models
start = time.time()
models = list(API.list_models(
filter=ModelFilter(task="text-generation"),
full=False,
cardData=True,
fetch_config=True,
))
print(f"Downloaded list of models in {time.time() - start:.2f} seconds")
def update_models(file_path, models):
"""
Search through all JSON files in the specified root folder and its subfolders,
and update the likes key in JSON dict from value of input dict
"""
with open(file_path, "r") as f:
model_infos = json.load(f)
for model_id, data in model_infos.items():
if model_id not in models:
continue
model_cfg = models[model_id]
data['likes'] = model_cfg.likes
#data['params'] = get_model_size(model_cfg, data['precision'])
data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
# Is the model still on the hub
still_on_hub, error, model_config = is_model_on_hub(
model_name=model_id, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False
)
# If the model doesn't have a model card or a license, we consider it's deleted
if still_on_hub:
try:
if check_model_card(model_id)[0] is False:
still_on_hub = False
except Exception:
still_on_hub = False
data['still_on_hub'] = still_on_hub
# Check if the model is a merge
is_merge_from_metadata = False
if still_on_hub:
model_card = ModelCard.load(model_id)
# Storing the model metadata
tags = []
if model_card.data.tags:
is_merge_from_metadata = "merge" in model_card.data.tags
merge_keywords = ["mergekit", "merged model", "merge model", "merging"]
# If the model is a merge but not saying it in the metadata, we flag it
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
if is_merge_from_model_card:
tags.append("merge")
if not is_merge_from_metadata:
tags.append("flagged:undisclosed_merge")
if "moe" in model_card.data.tags:
tags.append("moe")
data["tags"] = tags
with open(file_path, 'w') as f:
json.dump(model_infos, f, indent=2)
start = time.time()
updated_ids = update_models(DYNAMIC_INFO_FILE_PATH, models)
print(f"updated in {time.time() - start:.2f} seconds, updated ids: {len(updated_ids)}")
API.upload_file(
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
repo_id=DYNAMIC_INFO_REPO,
repo_type="dataset",
commit_message=f"Daily request file update.",
)
shutil.rmtree(TMP_FOLDER) |