import pandas as pd import altair as alt import pickle from datetime import datetime, timezone from typing import List, Dict, Tuple, Any, Union # Average ⬆️ human baseline is 0.897 (source: averaging human baselines below) # ARC human baseline is 0.80 (source: https://lab42.global/arc/) # HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide) # MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ) # TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf) # Define the human baselines HUMAN_BASELINES = { "Average ⬆️": 0.897 * 100, "ARC": 0.80 * 100, "HellaSwag": 0.95 * 100, "MMLU": 0.898 * 100, "TruthfulQA": 0.94 * 100, } def to_datetime(model_info: Tuple[str, Any]) -> datetime: """ Converts the lastModified attribute of the object to datetime. :param model_info: A tuple containing the name and object. The object must have a lastModified attribute with a string representing the date and time. :return: A datetime object converted from the lastModified attribute of the input object. """ name, obj = model_info return datetime.strptime(obj.lastModified, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc) def join_model_info_with_results(results_df: pd.DataFrame) -> pd.DataFrame: """ Integrates model information with the results DataFrame by matching 'Model sha'. :param results_df: A DataFrame containing results information including 'Model sha' column. :return: A DataFrame with updated 'Results Date' columns, which are synchronized with model information. """ # load cache from disk try: with open("model_info_cache.pkl", "rb") as f: model_info_cache = pickle.load(f) except (EOFError, FileNotFoundError): model_info_cache = {} # Sort date strings using datetime objects as keys sorted_dates = sorted(list(model_info_cache.items()), key=to_datetime, reverse=True) results_df["Results Date"] = datetime.now().replace(tzinfo=timezone.utc) # Define the date format string date_format = "%Y-%m-%dT%H:%M:%S.%fZ" # Iterate over sorted_dates and update the dataframe for name, obj in sorted_dates: # Convert the lastModified string to a datetime object last_modified_datetime = datetime.strptime(obj.lastModified, date_format).replace(tzinfo=timezone.utc) # Update the "Results Date" column where "Model sha" equals obj.sha results_df.loc[results_df["Model sha"] == obj.sha, "Results Date"] = last_modified_datetime return results_df def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame: """ Generates a DataFrame containing the maximum scores until each result date. :param results_df: A DataFrame containing result information including metric scores and result dates. :return: A new DataFrame containing the maximum scores until each result date for every metric. """ # Step 1: Ensure 'Results Date' is in datetime format and sort the DataFrame by it results_df["Results Date"] = pd.to_datetime(results_df["Results Date"]) results_df.sort_values(by="Results Date", inplace=True) # Step 2: Initialize the scores dictionary scores = { "Average ⬆️": [], "ARC": [], "HellaSwag": [], "MMLU": [], "TruthfulQA": [], "Result Date": [], } # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary for i, row in results_df.iterrows(): date = row["Results Date"] for column in scores.keys(): if column == "Result Date": if not scores[column] or scores[column][-1] <= date: scores[column].append(date) continue current_max = scores[column][-1] if scores[column] else float("-inf") scores[column].append(max(current_max, row[column])) # Step 4: Convert the dictionary to a DataFrame return pd.DataFrame(scores) def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame: """ Transforms the scores DataFrame into a new format suitable for plotting. :param scores_df: A DataFrame containing metric scores and result dates. :return: A new DataFrame reshaped for plotting purposes. """ # Sample columns cols = ["Average ⬆️", "ARC", "HellaSwag", "MMLU", "TruthfulQA"] # Initialize the list to store DataFrames dfs = [] # Iterate over the cols and create a new DataFrame for each column for col in cols: d = scores_df[[col, "Result Date"]].copy().reset_index(drop=True) d["Metric Name"] = col d.rename(columns={col: "Metric Value"}, inplace=True) dfs.append(d) # Concatenate all the created DataFrames concat_df = pd.concat(dfs, ignore_index=True) # Sort values by 'Result Date' concat_df.sort_values(by="Result Date", inplace=True) concat_df.reset_index(drop=True, inplace=True) # Drop duplicates based on 'Metric Name' and 'Metric Value' and keep the first (earliest) occurrence concat_df.drop_duplicates(subset=["Metric Name", "Metric Value"], keep="first", inplace=True) concat_df.reset_index(drop=True, inplace=True) return concat_df def create_metric_plot_obj(df: pd.DataFrame, metrics: List[str], human_baselines: Dict[str, float]) -> alt.LayerChart: """ Creates a visualization of metrics over time compared to human baselines. :param df: A DataFrame containing 'Metric Name', 'Metric Value', and 'Result Date' columns. :param metrics: A list of metric names to be included in the plot. :param human_baselines: A dictionary mapping metric names to their corresponding human baseline values. :return: An Altair LayerChart object visualizing the metrics over time. """ # Filter the DataFrame based on the metrics parameter df = df[df["Metric Name"].isin(metrics)] # Filter the human_baselines dictionary to include only the specified metrics filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics} # Create a DataFrame from filtered human baselines human_baselines_df = pd.DataFrame(list(filtered_human_baselines.items()), columns=["Metric Name", "Metric Value"]) # Create the lines chart for each metric over time. base = alt.Chart(df).encode(x="Result Date:T") lines = base.mark_line().encode( alt.Y("Metric Value:Q", scale=alt.Scale(domain=[0, 100])), color="Metric Name:N", ) # Create the rules (horizontal lines) chart for the human baselines. yrules = ( alt.Chart(human_baselines_df) .mark_rule(strokeDash=[12, 6], size=2) .encode(y="Metric Value:Q", color="Metric Name:N") ) # Combine lines with yrules and return the chart. return lines + yrules