Spaces:
Runtime error
Runtime error
File size: 6,268 Bytes
0eff2ef ee614c2 0eff2ef ee614c2 0eff2ef ee614c2 0eff2ef ee3f06f 0eff2ef ee614c2 ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef d92bd4e 0eff2ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import abc
import gradio as gr
from gen_table import *
from meta_data import *
with gr.Blocks() as demo:
results = load_results()
for k in results:
val = results[k]
val.pop('key')
N_DATA = 5
structs = [abc.abstractproperty() for _ in range(N_DATA)]
gr.Markdown(LEADERBORAD_INTRODUCTION)
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.TabItem('π
MMBench Leaderboard', elem_id='main', id=0):
_, check_box = BUILD_L1_DF(results)
table = generate_table(results)
table['Rank'] = list(range(1, len(table) + 1))
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
with gr.Row():
model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True
)
model_type = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True
)
data_component = gr.components.DataFrame(
value=table[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
visible=True)
def filter_df(fields, model_size, model_type):
headers = ['Rank'] + check_box['essential'] + fields
df = generate_table(results)
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
df = df[df['flag']]
df.pop('flag')
if len(df):
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
df = df[df['flag']]
df.pop('flag')
df['Rank'] = list(range(1, len(df) + 1))
comp = gr.components.DataFrame(
value=df[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
visible=True)
return comp
for cbox in [checkbox_group, model_size, model_type]:
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component)
with gr.TabItem('π About', elem_id='about', id=1):
gr.Markdown(urlopen(MMBench_README).read().decode())
DATASETS = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST_EN', 'MMBench_TEST_CN']
for i, dataset in enumerate(DATASETS):
with gr.TabItem(f'π {dataset}', elem_id=dataset, id=i + 2):
s = structs[i]
s.table, s.check_box = BUILD_L2_DF(results, dataset)
s.type_map = s.check_box['type_map']
s.type_map['Rank'] = 'number'
s.checkbox_group = gr.CheckboxGroup(
choices=s.check_box['all'],
value=s.check_box['required'],
label=f'{dataset} CheckBoxes',
interactive=True,
)
s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value
s.table['Rank'] = list(range(1, len(s.table) + 1))
with gr.Row():
s.model_size = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True
)
s.model_type = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True
)
s.data_component = gr.components.DataFrame(
value=s.table[s.headers],
type='pandas',
datatype=[s.type_map[x] for x in s.headers],
interactive=False,
visible=True)
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
def filter_df_l2(dataset_name, fields, model_size, model_type):
s = structs[DATASETS.index(dataset_name)]
headers = ['Rank'] + s.check_box['essential'] + fields
df = cp.deepcopy(s.table)
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
df = df[df['flag']]
df.pop('flag')
if len(df):
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
df = df[df['flag']]
df.pop('flag')
df['Rank'] = list(range(1, len(df) + 1))
comp = gr.components.DataFrame(
value=df[headers],
type='pandas',
datatype=[s.type_map[x] for x in headers],
interactive=False,
visible=True)
return comp
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
cbox.change(
fn=filter_df_l2,
inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type],
outputs=s.data_component)
with gr.Row():
with gr.Accordion('Citation', open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button')
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0')
|