File size: 1,512 Bytes
0eff2ef
ee3f06f
 
0eff2ef
ee3f06f
 
 
 
 
0eff2ef
 
 
ee3f06f
 
0eff2ef
ee3f06f
 
0eff2ef
ee3f06f
0eff2ef
ee3f06f
0eff2ef
 
ee3f06f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# CONSTANTS-URL
URL = "http://opencompass.openxlab.space/assets/mmbench/mmbench-data.json"
MMBench_README = 'https://raw.githubusercontent.com/open-compass/MMBench/main/README.md'
# CONSTANTS-CITATION
CITATION_BUTTON_TEXT = r"""@article{MMBench,
    author  = {Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, Dahua Lin},
    journal = {arXiv:2307.06281},
    title   = {MMBench: Is Your Multi-modal Model an All-around Player?},
    year    = {2023},
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
# CONSTANTS-TEXT
LEADERBORAD_INTRODUCTION = """# MMBench Leaderboard
### Welcome to the MMBench Leaderboard! On this leaderboard we share the evaluation results of VLMs on MMBench, MMBench v1.1, and CCBench.

To add your own model to the leaderboard, please create a PR in [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) to support your VLM or directly send us the inference results of your VLM, obtained with VLMEvalKit.
For any questions or concerns, please feel free to contact us at [opencompass, duanhaodong]@pjlab.org.cn.
"""

# CONSTANTS-FIELDS
META_FIELDS = ['Method', 'Param (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified', 'Org']
MMBENCH_FIELDS = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench']
MODEL_SIZE = ['<4B', '4B-10B', '10B-20B', '20B-40B', '>40B', 'Unknown']
MODEL_TYPE = ['Public', 'Private', 'Verified']