Spaces:
Runtime error
Runtime error
import copy as cp | |
import json | |
from collections import defaultdict | |
from urllib.request import urlopen | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from meta_data import MMBENCH_FIELDS, META_FIELDS, URL | |
def listinstr(lst, s): | |
assert isinstance(lst, list) | |
for item in lst: | |
if item in s: | |
return True | |
return False | |
def upper_key(k): | |
if k == 'ocr': | |
return 'OCR' | |
elif '_' in k: | |
k = k.split('_') | |
k = [x[0].upper() + x[1:] for x in k] | |
k = ' '.join(k) | |
return k | |
else: | |
return k | |
def load_results(): | |
data = json.loads(urlopen(URL).read()) | |
names = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST_EN', 'MMBench_TEST_CN'] | |
skip_keys = ['Method', 'Parameters', 'Language Model', 'Vision Model', 'Org', 'Time', 'Verified', 'OpenSource', 'key'] | |
META_MAP = data['META_MAP'] | |
for n in names: | |
print(n) | |
res_map = {x['Method'][0]: {upper_key(k): v for k, v in x.items() if k not in skip_keys} for x in data[n + '_Data']} | |
for r in res_map: | |
META_MAP[r][n] = res_map[r] | |
return META_MAP | |
def nth_large(val, vals): | |
return sum([1 for v in vals if v > val]) + 1 | |
def model_size_flag(sz, FIELDS): | |
if pd.isna(sz) and 'Unknown' in FIELDS: | |
return True | |
if pd.isna(sz): | |
return False | |
sz = int(sz) | |
if '<4B' in FIELDS and sz < 4: | |
return True | |
if '4B-10B' in FIELDS and sz >= 4 and sz < 10: | |
return True | |
if '10B-20B' in FIELDS and sz >= 10 and sz < 20: | |
return True | |
if '20B-40B' in FIELDS and sz >= 20 and sz < 40: | |
return True | |
if '>40B' in FIELDS and sz >= 40: | |
return True | |
return False | |
def model_type_flag(line, FIELDS): | |
if 'Public' in FIELDS and line['OpenSource'] == 'Yes': | |
return True | |
if 'Private' in FIELDS and line['OpenSource'] == 'No': | |
return True | |
if 'Verified' in FIELDS and line['Verified'] == 'Yes': | |
return True | |
return False | |
def BUILD_L1_DF(results): | |
check_box = {} | |
check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model'] | |
# revise there to set default dataset | |
check_box['required'] = ['MMBench_TEST_V11', 'MMBench_TEST', 'CCBench'] | |
check_box['avg'] = ['MMBench_TEST_V11', 'MMBench_TEST'] | |
check_box['all'] = check_box['avg'] + MMBENCH_FIELDS | |
type_map = defaultdict(lambda: 'number') | |
type_map['Method'] = 'html' | |
type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html' | |
type_map['OpenSource'] = type_map['Verified'] = 'str' | |
check_box['type_map'] = type_map | |
df = generate_table(results) | |
return df, check_box | |
def BUILD_L2_DF(results, dataset): | |
res = defaultdict(list) | |
sub = [v for v in results.values() if dataset in v] | |
assert len(sub) | |
fields = list(sub[0][dataset].keys()) | |
non_overall_fields = [x for x in fields if 'Overall' not in x] | |
overall_fields = [x for x in fields if 'Overall' in x] | |
for m in results: | |
item = results[m] | |
if dataset not in item: | |
continue | |
for k in META_FIELDS: | |
if k == 'Param (B)': | |
param = item['Parameters'] | |
res[k].append(float(param.replace('B', '')) if param != '' else None) | |
elif k == 'Method': | |
name, url = item['Method'] | |
res[k].append(f'<a href="{url}">{name}</a>') | |
else: | |
s = item[k].replace('\n', '<br>') | |
s = s.replace(' & ', '<br>') | |
res[k].append(s) | |
for d in overall_fields: | |
res[d].append(float(item[dataset][d])) | |
for d in non_overall_fields: | |
res[d].append(float(item[dataset][d])) | |
df = pd.DataFrame(res) | |
all_fields = overall_fields + non_overall_fields | |
# Use the first 5 non-overall fields as required fields | |
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5] | |
df = df.sort_values('Overall') | |
df = df.iloc[::-1] | |
check_box = {} | |
check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model'] | |
check_box['required'] = required_fields | |
check_box['all'] = all_fields | |
type_map = defaultdict(lambda: 'number') | |
type_map['Method'] = 'html' | |
type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html' | |
type_map['OpenSource'] = type_map['Verified'] = 'str' | |
check_box['type_map'] = type_map | |
return df, check_box | |
def generate_table(results): | |
res = defaultdict(list) | |
for i, m in enumerate(results): | |
item = results[m] | |
for k in META_FIELDS: | |
if k == 'Param (B)': | |
param = item['Parameters'] | |
res[k].append(float(param.replace('B', '')) if param != '' else None) | |
elif k == 'Method': | |
name, url = item['Method'] | |
res[k].append(f'<a href="{url}">{name}</a>') | |
else: | |
s = item[k].replace('\n', '<br>') | |
s = s.replace(' & ', '<br>') | |
res[k].append(s) | |
for d in ['MMBench_TEST_V11', 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST', 'MMBench_TEST_EN', 'MMBench_TEST_CN']: | |
key_name = 'Overall' if d != 'OCRBench' else 'Final Score' | |
# Every Model should have MMBench_V11 results | |
if d == 'MMBench_TEST_V11': | |
if 'MMBench_TEST_EN_V11' in item and 'MMBench_TEST_CN_V11' in item: | |
val = item['MMBench_TEST_EN_V11'][key_name] + item['MMBench_TEST_CN_V11'][key_name] | |
val = val / 2 | |
val = float(f'{val:.1f}') | |
res[d].append(val) | |
else: | |
res[d].append(None) | |
elif d == 'MMBench_TEST': | |
if 'MMBench_TEST_EN' in item and 'MMBench_TEST_CN' in item: | |
val = float(item['MMBench_TEST_EN'][key_name]) + float(item['MMBench_TEST_CN'][key_name]) | |
val = val / 2 | |
val = float(f'{val:.1f}') | |
res[d].append(val) | |
else: | |
res[d].append(None) | |
elif d in item: | |
val = float(item[d][key_name]) | |
val = float(f'{val:.1f}') | |
res[d].append(val) | |
else: | |
res[d].append(None) | |
df = pd.DataFrame(res) | |
df_list = [] | |
for k in [ | |
'MMBench_TEST_V11', 'MMBench_TEST', | |
'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', | |
'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench' | |
]: | |
if len(df) == 0: | |
break | |
valid, missing = df[~pd.isna(df[k])], df[pd.isna(df[k])] | |
valid = valid.sort_values(k) | |
valid = valid.iloc[::-1] | |
df_list.append(valid) | |
df = missing | |
df = pd.concat(df_list) | |
return df | |